Leg mechanics contribute to establishing swing phase trajectories during memory-guided stepping movements in walking cats: a computational analysis
نویسندگان
چکیده
When quadrupeds stop walking after stepping over a barrier with their forelegs, the memory of barrier height and location is retained for many minutes. This memory is subsequently used to guide hind leg movements over the barrier when walking is resumed. The upslope of the initial trajectory of hind leg paw movements is strongly dependent on the initial location of the paw relative to the barrier. In this study, we have attempted to determine whether mechanical factors contribute significantly in establishing the slope of the paw trajectories by creating a four-link biomechanical model of a cat hind leg and driving this model with a variety of joint-torque profiles, including average torques for a range of initial paw positions relative to the barrier. Torque profiles for individual steps were determined by an inverse dynamic analysis of leg movements in three normal cats. Our study demonstrates that limb mechanics can contribute to establishing the dependency of trajectory slope on the initial position of the paw relative to the barrier. However, an additional contribution of neuronal motor commands was indicated by the fact that the simulated slopes of paw trajectories were significantly less than the observed slopes. A neuronal contribution to the modification of paw trajectories was also revealed by our observations that both the magnitudes of knee flexor muscle EMG bursts and the initial knee flexion torques depended on initial paw position. Previous studies have shown that a shift in paw position prior to stepping over a barrier changes the paw trajectory to be appropriate for the new paw position. Our data indicate that both mechanical and neuronal factors contribute to this updating process, and that any shift in leg position during the delay period modifies the working memory of barrier location.
منابع مشابه
Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg.
During stance and swing phase of a walking stick insect, the retractor coxae (RetCx) and protractor coxae (ProCx) motoneurons and muscles supplying the thorax-coxa (TC)-joint generate backward and forward movements of the leg. Their activity is tightly coupled to the movement of the more distal leg segments, i.e., femur, tibia, and tarsus. We used the single middle leg preparation to study how ...
متن کاملEnergy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking
In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...
متن کاملComputer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition.
Physiological studies in walking cats have indicated that two sensory signals are involved in terminating stance in the hind legs: one related to unloading of the leg and the other to hip extension. To study the relative importance of these two signals, we developed a three-dimensional computer simulation of the cat hind legs in which the timing of the swing-to-stance transition was controlled ...
متن کاملLong-lasting memories of obstacles guide leg movements in the walking cat.
We examined the ways in which memories of previously seen obstacles can alter the stepping of walking cats. Cats were paused after the forelegs, but not the hindlegs, had stepped over an obstacle. Near the beginning of a variable delay period, the obstacle was lowered. On the subsequent step, the path of the hindlegs allowed us to make inferences about whether the memory of the obstacle was inf...
متن کاملLong-lasting, context-dependent modification of stepping in the cat after repeated stumbling-corrective responses.
A consistent feature of animal locomotion is the capacity to maintain stable movements in changing environments. Here we describe long-term modification of the swing movement of the hind leg in cats in response to repeatedly impeding the movement of the leg. While studying phase transitions in the hind legs, we discovered that repetitively evoking the stumbling-corrective reaction led to long-l...
متن کامل