Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism.
نویسندگان
چکیده
The genetic heterogeneity of autism poses a major challenge for identifying mechanism-based treatments. A number of rare mutations are associated with autism, and it is unclear whether these result in common neuronal alterations. Monogenic syndromes, such as fragile X, include autism as one of their multifaceted symptoms and have revealed specific defects in synaptic plasticity. We discovered an unexpected convergence of synaptic pathophysiology in a nonsyndromic form of autism with those in fragile X syndrome. Neuroligin-3 knockout mice (a model for nonsyndromic autism) exhibited disrupted heterosynaptic competition and perturbed metabotropic glutamate receptor-dependent synaptic plasticity, a hallmark of fragile X. These phenotypes could be rescued by reexpression of neuroligin-3 in juvenile mice, highlighting the possibility of reverting neuronal circuit alterations in autism after the completion of development.
منابع مشابه
Neuroligins provide molecular links between syndromic and nonsyndromic autism.
Autism is a common and heritable neuropsychiatric disorder that can be categorized into two types: syndromic and nonsyndromic, the former of which are associated with other neurological disorders or syndromes. Molecular and functional links between syndromic and nonsyndromic autism genes were lacking until studies aimed at understanding the role of trans-synaptic adhesion molecule neuroligin, w...
متن کاملHeterogeneity and convergence: the synaptic pathophysiology of autism.
Autism is a developmental disorder characterised by a high heterogeneity of clinical diagnoses and genetic associations. This heterogeneity is a challenge for the identification of the pathophysiology of the disease and for the development of new therapeutic strategies. New conceptual approaches are being used to try to challenge this complexity and gene cluster analysis studies suggest that th...
متن کاملSynaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities.
The discovery of the genetic causes of syndromic autism spectrum disorders and intellectual disabilities has greatly informed our understanding of the molecular pathways critical for normal synaptic function. The top-down approaches using human phenotypes and genetics helped identify causative genes and uncovered the broad spectrum of neuropsychiatric features that can result from various mutat...
متن کاملLinking neocortical, cognitive, and genetic variability in autism with alterations of brain plasticity: The Trigger-Threshold-Target model
The phenotype of autism involves heterogeneous adaptive traits (strengths vs. disabilities), different domains of alterations (social vs. non-social), and various associated genetic conditions (syndromic vs. nonsyndromic autism). Three observations suggest that alterations in experience-dependent plasticity are an etiological factor in autism: (1) the main cognitive domains enhanced in autism a...
متن کاملContributions of Metabotropic Glutamate Receptors to the Pathophysiology of Autism
Autism spectrum disorder (ASD) is a complex and heterogeneous disorder, and in the vast majority of cases the etiology is unknown. However, there are many syndromes of known genetic origin that have a high incidence of autism. These highly penetrant syndromic forms of autism offer a unique opportunity for the study of ASD because animal models can be readily engineered to carry the same genetic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 338 6103 شماره
صفحات -
تاریخ انتشار 2012