Building Self-Healing Alloy Architecture for Stable Sodium-Ion Battery Anodes: A Case Study of Tin Anode Materials.

نویسندگان

  • Jianfeng Mao
  • Xiulin Fan
  • Chao Luo
  • Chunsheng Wang
چکیده

The rational design of anode materials is a challenge in developing sodium ion batteries. Alloy anodes provide high gravimetric and volumetric capacities but suffer the short cycle life as a result of the continuous and accumulated pulverization, resulting from a large volume change during the cycling process. Herein, using pure Sn, an irreversible conversion reaction combined with an alloy reaction (SnO), and a reversible conversion reaction combined with an alloy reaction (Sn4P3) as samples, we demonstrate that the pulverization and aggregation of the alloy anode can be partially recovered and the accumulation of pulverization and aggregation during charge/discharge cycles can be terminated using a reversible conversion reaction combined with an alloy reaction. The cycling stability of three Sn-based anodes increases in order of Sn4P3 > SnO > Sn. The enhancement in Sn4P3 can be attributed to a reversible reaction of Sn4P3 + 9Na ↔ 4Sn + 3Na3P, which repairs the cracks, damage, and aggregation of Sn particles that occurred in the alloy process of 4Sn + 15Na ↔ Na15Sn4 during cycling and, hence, terminates the pulverization. The repair mechanism looks like the self-healing feature in nature, where the damage can be healed by itself. Therefore, the suggested mechanism can be called self-healing, while the repaired anode can be termed as the self-healing anode. The use of self-healing strategies to build an electrode architecture is new and highly desirable because it can increase the cycle life and provide a general approach toward stable electrode materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical Performance of Porous Carbon/Tin Composite Anodes for SodiumIon and LithiumIon Batteries

The electrochemical performance of mesoporous carbon (C)/tin (Sn) anodes in Na-ion and Li-ion batteries is systematically investigated. The mesoporous C/Sn anodes in a Na-ion battery shows similar cycling stability but lower capacity and poorer rate capability than that in a Li-ion battery. The desodiation potentials of Sn anodes are approximately 0.21 V lower than delithiation potentials. The ...

متن کامل

Solid-State Fabrication of SnS2/C Nanospheres for High-Performance Sodium Ion Battery Anode.

Tin disulfide (SnS2) has emerged as a promising anode material for sodium ion batteries (NIBs) due to its unique layered structure, high theoretical capacity, and low cost. Conventional SnS2 nanomaterials are normally synthesized using hydrothermal method, which is time-consuming and difficult to scale up for mass production. In this study, we develop a simple solid-state reaction method, in wh...

متن کامل

3D Scaffolded Nickel-Tin Li-Ion Anodes with Enhanced Cyclability.

A 3D mechanically stable scaffold is shown to accommodate the volume change of a high-specific-capacity nickel-tin nanocomposite during operation as a Li-ion battery anode. The nickel-tin anode is supported by an electrochemically inactive conductive scaffold with an engineered free volume and controlled characteristic dimensions, which engender the electrode with significantly improved cyclabi...

متن کامل

Tin-coated viral nanoforests as sodium-ion battery anodes.

Designed as a high-capacity alloy host for Na-ion chemistry, a forest of Sn nanorods with a unique core-shell structure was synthesized on viral scaffolds, which were genetically engineered to ensure a nearly vertical alignment upon self-assembly onto a metal substrate. The interdigital spaces thus formed between individual rods effectively accommodated the volume expansion and contraction of t...

متن کامل

Sn- and SnO2-Graphene Flexible Foams Suitable as Binder- Free Anodes for Lithium Ion Batteries

With the objective of developing new advanced composite materials that can be used as anodes for lithium ion batteries (LIBs), herein we describe the synthesis of a novel three dimensional (3D) macroporous foams formed by reduced graphene oxide (rGO) and submicron tin-based particles. The aerogels were obtained by freeze/freeze-drying a suspension of graphene oxide (GO) in the presence of a tin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 8 11  شماره 

صفحات  -

تاریخ انتشار 2016