Cellular Senescence in Yeast Is Regulated by rDNA Noncoding Transcription
نویسندگان
چکیده
Genomic instability is a conserved factor in lifespan reduction, although the molecular mechanism is not known. Studies in the yeast Saccharomyces cerevisiae over the past 20 years have found a connection between the ribosomal RNA gene cluster (rDNA) and lifespan. The highly repetitive rDNA exhibits genomic instability, and the antiaging histone deacetylase gene SIR2 regulates this instability. We previously proposed that SIR2 governs lifespan by repressing rDNA noncoding transcription and rDNA instability, but the extent to which lifespan is affected by SIR2 acting at the rDNA versus other genomic regions, and the relationship between rDNA noncoding transcription/rDNA stability and lifespan have remained controversial. To control rDNA noncoding transcription and rDNA instability, we use a strain in which the rDNA noncoding promoter is replaced with an inducible promoter. Here, we show that repression of noncoding transcription extends lifespan and makes SIR2 dispensable for lifespan extension. These results indicate that Sir2 maintains lifespan through repression of E-pro noncoding transcription in the rDNA cluster, rather than pleiotropically at other loci. The observation of rDNA instability in other organisms, including humans, suggests that this may be a conserved aging pathway.
منابع مشابه
Molecular genetic control of leaf lifespan in plants - A review
Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...
متن کاملHow does genome instability affect lifespan?
The genome is composed not only of genes but also of several noncoding functional elements (NOCs/ncFE, here I use NOCs), such as transcriptional promoters, enhancers, replication origins, centromeres and telomeres. rDNA has both gene and NOC characteristics. Thus, the rDNA encodes ribosomal RNAs, components of the ribosomes, that account for approximately 80% of the total RNA in a cell. However...
متن کاملCellular senescence: Lessons from yeast for human aging?
Recent results point to an important role for the nucleolus in the senescence of yeast cells. A further report suggests that the formation and preferential accumulation in mother cells of extrachromosomal rDNA circles is a cause of aging in yeast; this may be an ancient and conserved mechanism of senescence.
متن کاملIdentification of novel genes expressed in Brassica napus during leaf senescence and in response to oxidative stress
Senescence is a genetically regulated oxidative process that involves a general degradation of cellular structures and enzymes and the mobilization of the products of degradation to other parts of the plant. The cDNA-AFLP (cDNA-Amplified Fragment Length Polymorphism) analysis has been used under stringent PCR conditions afforded by ligation of adapters to restriction fragments, and the use of s...
متن کاملIdentification of novel noncoding transcripts in telomerase-negative yeast using RNA-seq
Telomerase is a ribonucleoprotein that maintains the ends of linear chromosomes in most eukaryotes. Loss of telomerase activity results in shortening of telomeric DNA and eventually a specific G2/M cell-cycle arrest known as senescence. In humans, telomere shortening occurs during aging, while inappropriate activation of telomerase is associated with approximately 90% of cancers. Previous studi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 23 شماره
صفحات -
تاریخ انتشار 2013