Geo-social visual analytics
نویسندگان
چکیده
Spatial analysis and social network analysis typically consider social processes in their own specific contexts, either geographical or network space. Both approaches demonstrate strong conceptual overlaps. For example, actors close to each other tend to have greater similarity than those far apart; this phenomenon has different labels in geography (spatial autocorrelation) and in network science (homophily). In spite of those conceptual and observed overlaps, the integration of geography and social network context has not received the attention needed in order to develop a comprehensive understanding of their interaction or their impact on outcomes of interest, such as population health behaviors, information dissemination, or human behavior in a crisis. In order to address this gap, this paper discusses the integration of geographic with social network perspectives applied to understanding social processes in place from two levels: the theoretical level and the methodological level. At the theoretical level, this paper argues that the concepts of nearness and relationship in terms of a possible extension of the First Law of Geography are a matter of both geographical and social network distance, relationship, and interaction. At the methodological level, the integration of geography and social network contexts are framed within a new interdisciplinary field: visual analytics, in which three major application-oriented subfields (data exploration, decision-making, and predictive analysis) are used to organize discussion. In each subfield, this paper presents a theoretical framework first, and then reviews what has been achieved regarding geo-social visual analytics in order to identify potential future research.
منابع مشابه
Geo-based Social Media Analytics and SMART Dashboard for Tracking Influenza Outbreaks
Objective We developed geo-targeted social media application program interfaces (APIs) for Twitter and a web-based social media analytics and research testbed (SMART) dashboard to analyze “flu” related tweets. During the 2013-14 flu season, for 10 cities with active surveillance for influenza (ILI), we correlated weekly tweeting rates and visual patterns of flu tweeting rates. To facilitate wid...
متن کاملFraPPE: A Vocabulary to Represent Heterogeneous Spatio-temporal Data to Support Visual Analytics
Nowadays, we are witnessing a rapid increase of spatiotemporal data that permeates different aspects of our everyday life such as mobile geolocation services and geo-located weather sensors. This big amount of data needs innovative analytics techniques to ease correlation and comparison operations. Visual Analytics is often advocated as a doable solution thanks to its ability to enable users to...
متن کاملA Geovisual Analytic Approach to Understanding Geo-Social Relationships in the International Trade Network
The world has become a complex set of geo-social systems interconnected by networks, including transportation networks, telecommunications, and the internet. Understanding the interactions between spatial and social relationships within such geo-social systems is a challenge. This research aims to address this challenge through the framework of geovisual analytics. We present the GeoSocialApp w...
متن کاملExploring Multi-Scale Spatiotemporal Twitter User Mobility Patterns with a Visual-Analytics Approach
Understanding human mobility patterns is of great importance for urban planning, traffic management, and even marketing campaign. However, the capability of capturing detailed human movements with fine-grained spatial and temporal granularity is still limited. In this study, we extracted high-resolution mobility data from a collection of over 1.3 billion geo-located Twitter messages. Regarding ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Spatial Information Science
دوره 8 شماره
صفحات -
تاریخ انتشار 2014