High-Order Central WENO Schemes for Multidimensional Hamilton-Jacobi Equations
نویسندگان
چکیده
We present new thirdand fifth-order Godunov-type central schemes for approximating solutions of the Hamilton–Jacobi (HJ) equation in an arbitrary number of space dimensions. These are the first central schemes for approximating solutions of the HJ equations with an order of accuracy that is greater than two. In two space dimensions we present two versions for the third-order scheme: one scheme that is based on a genuinely two-dimensional central weighted ENO reconstruction, and another scheme that is based on a simpler dimension-by-dimension reconstruction. The simpler dimension-by-dimension variant is then extended to a multidimensional fifth-order scheme. Our numerical examples in one, two, and three space dimensions verify the expected order of accuracy of the schemes.
منابع مشابه
Central WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes
We derive Godunov-type semidiscrete central schemes for Hamilton–Jacobi equations on triangular meshes. High-order schemes are then obtained by combining our new numerical fluxes with high-order WENO reconstructions on triangular meshes. The numerical fluxes are shown to be monotone in certain cases. The accuracy and high-resolution properties of our scheme are demonstrated in a variety of nume...
متن کاملMapped WENO and weighted power ENO reconstructions in semi-discrete central schemes for Hamilton–Jacobi equations
We incorporate new high-order WENO-type reconstructions into Godunov-type central schemes for Hamilton–Jacobi equations. We study schemes that are obtained by combining the Kurganov–Noelle–Petrova flux with the weighted power ENO and the mapped WENO reconstructions. We also derive new variants of these reconstructions by composing the weighted power ENO and the mapped WENO reconstructions with ...
متن کاملA Weighted Essentially Nonoscillatory, Large Time-Step Scheme for Hamilton-Jacobi Equations
We investigate the application of weighted essentially nonoscillatory (WENO) reconstructions to a class of semi-Lagrangian schemes for first order time-dependent Hamilton–Jacobi equations. In particular, we derive a general form of the scheme, study sufficient conditions for its convergence with high-order reconstructions, and perform numerical tests to study its efficiency. In addition, we pro...
متن کاملHermite WENO schemes for Hamilton–Jacobi equations
In this paper, a class of weighted essentially non-oscillatory (WENO) schemes based on Hermite polynomials, termed HWENO (Hermite WENO) schemes, for solving Hamilton–Jacobi equations is presented. The idea of the reconstruction in the HWENO schemes comes from the original WENO schemes, however both the function and its first derivative values are evolved in time and used in the reconstruction, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 41 شماره
صفحات -
تاریخ انتشار 2003