Modified (PNA, 2'-O-methyl and phosphoramidate) anti-TAR antisense oligonucleotides as strong and specific inhibitors of in vitro HIV-1 reverse transcription.
نویسندگان
چکیده
Natural beta-phosphodiester 16mer and 15mer antisense oligonucleotides targeted against the HIV-1 and HIV-2 TAR RNAs respectively were previously described as sequence-specific inhibitors of in vitro retroviral reverse transcription. In this work, we tested chemically modified oligonucleotide analogues: alpha-phosphodiester, phosphorothioate, methylphosphonate, peptide nucleic acid or PNA, 2'- o -methyl and (N3'-P5') phosphoramidate versions of the 16mer anti-TAR oligonucleotide. PNA, 2'- O -methyl and (N3'-P5') phosphoramidate oligomers showed a strong inhibitory effect compared with the unmodified 16mer, with reverse transcription inhibition (IC50) values in the nanomolar range. The inhibition was sequence-specific, as scrambled and mismatched control oligonucleotides were not able to inhibit cDNA synthesis. No direct binding of the 2'- O -methyl, PNA or (N3'-P5') phosphoramidate anti-TAR oligonucleotides to the HIV-1 reverse transcriptase was observed. The higher T m obtained with 2'- O -methyl, (N3'-P5') phosphoramidate and PNA molecules concerning the annealing with the stem-loop structure of the TAR RNA, in comparison with the beta-phosphodiester oligonucleotides, is correlated with their high inhibitory effect on reverse transcription.
منابع مشابه
miR-122 targeting with LNA/2'-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates.
MicroRNAs are small noncoding RNAs that regulate many cellular processes in a post-transcriptional mode. MicroRNA knockdown by antisense oligonucleotides is a useful strategy to explore microRNA functionality and as potential therapeutics. MicroRNA-122 (miR-122) is a liver-specific microRNA, the main function of which has been linked with lipid metabolism and liver homeostasis. Here, we show th...
متن کاملEfficient in vitro inhibition of HIV-1 gag reverse transcription by peptide nucleic acid (PNA) at minimal ratios of PNA/RNA.
We have tested the inhibitory potential of peptide nucleic acid (PNA) on in vitro reverse transcription of the HIV-1 gag gene. PNA was designed to target different regions of the HIV-1 gag gene and the effect on reverse transcription by HIV-1, MMLV and AMV reverse transcriptases (RTs) was investigated. We found that a bis-PNA (parallel antisense 10mer linked to antiparallel antisense 10mer) was...
متن کاملIn vitro effect of antisense oligonucleotides on human immunodeficiency virus type 1 reverse transcription.
The molecular events involved in antisense-mediated inhibition of retroviral transcription were studied by analyzing the in vitro effect of antisense oligodeoxynucleotides on reverse transcription by Human Immunodeficiency Virus type 1 (HIV-1) reverse transcriptase (RT). Oligonucleotides have been designed to be complementary to three targets located in the 5' region of the HIV-1 RNA genome: th...
متن کاملAntisense 2'-O-alkyl oligoribonucleotides are efficient inhibitors of reverse transcription
Reverse transcription is one step of the retroviral development which can be inhibited by antisense oligonucleotides complementary to the RNA template. 2'-O-Alkyl oligoribonucleotides are of interest due to their nuclease resistance, and to the high stability of the hybrids they form with RNA. Oligonucleotides, either fully or partly modified with 2'-O-alkyl residues, were targeted to an RNA te...
متن کاملRestoration of correct splicing in IVSI-110 mutation of β-globin gene with antisense oligonucleotides: implications and applications in functional assay development
Objective(s): The use of antisense oligonucleotides (AOs) to restore normal splicing by blocking the recognition of aberrant splice sites by the spliceosome represents an innovative means of potentially controlling certain inherited disorders affected by aberrant splicing. Selection of the appropriate target site is essential in the success of an AO therapy. In this study, in search for a splic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 26 23 شماره
صفحات -
تاریخ انتشار 1998