Electromagnetic stirring in a microbioreactor with non‐conventional chamber morphology and implementation of multiplexed mixing
نویسندگان
چکیده
BACKGROUND Microbioreactors have emerged as novel tools for early bioprocess development. Mixing lies at the heart of bioreactor operation (at all scales). The successful implementation of micro-stirring methods is thus central to the further advancement of microbioreactor technology. The aim of this study was to develop a micro-stirring method that aids robust microbioreactor operation and facilitates cost-effective parallelization. RESULTS A microbioreactor was developed with a novel micro-stirring method involving the movement of a magnetic bead by sequenced activation of a ring of electromagnets. The micro-stirring method offers flexibility in chamber designs, and mixing is demonstrated in cylindrical, diamond and triangular shaped reactor chambers. Mixing was analyzed for different electromagnet on/off sequences; mixing times of 4.5 s, 2.9 s, and 2.5 s were achieved for cylindrical, diamond and triangular shaped chambers, respectively. Ease of micro-bubble free priming, a typical challenge of cylindrical shaped microbioreactor chambers, was obtained with a diamond-shaped chamber. Consistent mixing behavior was observed between the constituent reactors in a duplex system. CONCLUSION A novel stirring method using electromagnetic actuation offering rapid mixing and easy integration with microbioreactors was characterized. The design flexibility gained enables fabrication of chambers suitable for microfluidic operation, and a duplex demonstrator highlights potential for cost-effective parallelization. Combined with a previously published cassette-like fabrication of microbioreactors, these advances will facilitate the development of robust and parallelized microbioreactors. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
منابع مشابه
Development of a multiplexed microbioreactor system for high-throughput bioprocessing.
A multiplexed microbioreactor system for parallel operation of multiple microbial fermentation is described. The system includes miniature motors for magnetic stirring of the microbioreactors and optics to monitor the fermentation parameters optical density (OD), dissolved oxygen (DO), and pH, in-situ and in real time. The microbioreactors are fabricated out of poly(methylmethacrylate)(PMMA) an...
متن کاملA well-mixed, polymer-based microbioreactor with integrated optical measurements.
We describe a 150 microL microbioreactor fabricated in poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) to cultivate microbial cell cultures. Mixing is achieved by a small magnetic stir bar and fluorescent sensors are integrated for on-line measurement of pH and dissolved oxygen. Optical transmission measurements are used for cell density. The body of the reactor is poly(methyl...
متن کاملRole of gel aging in template-free synthesis of micro and nano-crystalline sodalites
A facile effective stirring aging at room temperature prior to conventional hydrothermal treatment was employed in the template-free synthesis of micro- and nano-crystalline sodalites with two different initial gel compositions. The effect of initial Si/Al molar ratio, NaOH concentration and stirring aging time were investigated on the morphology and particle size of the...
متن کاملIntegrated microbioreactor for culture and analysis of bacteria, algae and yeast.
We introduce a micro-scale bioreactor for automated culture and density analysis of microorganisms. The microbioreactor is powered by digital microfluidics (DMF) and because it is used with bacteria, algae and yeast, we call it the BAY microbioreactor. Previous miniaturized bioreactors have relied on microchannels which often require valves, mixers and complex optical systems. In contrast, the ...
متن کاملMixing of the Immiscible Liquids in the Entrance Region of a T-Type Chamber Using Laser Induced Fluorescence (LIF) Method
A Laser Induced Fluorescence technique (LIF) has been used to study the mixing behavior of two emerging streams in a T-Type mixing chamber. A mixing index on the basis of digital image light intensities is calculated. It has been shown that averaging over more than 800 images leads to a stable mixing index calculation. Moreover, the effect of equal and un-equal flow rates on the mixing behavior...
متن کامل