Perseus: Randomized Point-based Value Iteration for POMDPs

نویسندگان

  • Matthijs T. J. Spaan
  • Nikos A. Vlassis
چکیده

Partially observable Markov decision processes (POMDPs) form an attractive and principled framework for agent planning under uncertainty. Point-based approximate techniques for POMDPs compute a policy based on a finite set of points collected in advance from the agent’s belief space. We present a randomized point-based value iteration algorithm called Perseus. The algorithm performs approximate value backup stages, ensuring that in each backup stage the value of each point in the belief set is improved; the key observation is that a single backup may improve the value of many belief points. Contrary to other point-based methods, Perseus backs up only a (randomly selected) subset of points in the belief set, sufficient for improving the value of each belief point in the set. We show how the same idea can be extended to dealing with continuous action spaces. Experimental results show the potential of Perseus in large scale POMDP problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robot Planning in Partially Observable Continuous Domains

We present a value iteration algorithm for learning to act in Partially Observable Markov Decision Processes (POMDPs) with continuous state spaces. Mainstream POMDP research focuses on the discrete case and this complicates its application to, e.g., robotic problems that are naturally modeled using continuous state spaces. The main difficulty in defining a (belief-based) POMDP in a continuous s...

متن کامل

Point-Based Value Iteration for Continuous POMDPs

We propose a novel approach to optimize Partially Observable Markov Decisions Processes (POMDPs) defined on continuous spaces. To date, most algorithms for model-based POMDPs are restricted to discrete states, actions, and observations, but many real-world problems such as, for instance, robot navigation, are naturally defined on continuous spaces. In this work, we demonstrate that the value fu...

متن کامل

Point-Based Value Iteration for Constrained POMDPs

Constrained partially observable Markov decision processes (CPOMDPs) extend the standard POMDPs by allowing the specification of constraints on some aspects of the policy in addition to the optimality objective for the value function. CPOMDPs have many practical advantages over standard POMDPs since they naturally model problems involving limited resource or multiple objectives. In this paper, ...

متن کامل

Generalized Point Based Value Iteration for Interactive POMDPs

We develop a point based method for solving finitely nested interactive POMDPs approximately. Analogously to point based value iteration (PBVI) in POMDPs, we maintain a set of belief points and form value functions composed of those value vectors that are optimal at these points. However, as we focus on multiagent settings, the beliefs are nested and computation of the value vectors relies on p...

متن کامل

Anytime Point-Based Approximations for Large POMDPs

The Partially Observable Markov Decision Process has long been recognized as a rich framework for real-world planning and control problems, especially in robotics. However exact solutions in this framework are typically computationally intractable for all but the smallest problems. A well-known technique for speeding up POMDP solving involves performing value backups at specific belief points, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Artif. Intell. Res.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2005