Simulation of heavy rainfall events over Indian monsoon region using WRF-3DVAR data assimilation system
نویسندگان
چکیده
We present the results of the impact of the 3D variational data assimilation (3DVAR) system within the Weather Research and Forecasting (WRF) model to simulate three heavy rainfall events (25–28 June 2005, 29–31 July 2004, and 7–9 August 2002) over the Indian monsoon region. For each event, two numerical experiments were performed. In the first experiment, namely the control simulation (CNTL), the low-resolution global analyses are used as the initial and boundary conditions of the model. In the second experiment (3DV-ANA), the model integration was carried out by inserting additional observations in the model’s initial conditions using the 3DVAR scheme. The 3DVAR used surface weather stations, buoy, ship, radiosonde/rawinsonde, and satellite (oceanic surface wind, cloud motion wind, and cloud top temperature) observations obtained from the India Meteorological Department (IMD). After the successful inclusion of additional observational data using the 3DVAR data assimilation technique, the resulting reanalysis was able to successfully reproduce the structure of convective organization as well as prominent synoptic features associated with the midtropospheric cyclones (MTC). The location and intensity of the MTC were better simulated in the 3DV-ANA as compared to the CNTL. The results demonstrate that the improved initial conditions of the mesoscale model using 3DVAR enhanced the location and amount of rainfall over the Indian monsoon region. Model verification and statistical skill were assessed with the help of available upper-air sounding data. The objective verification further highlighted the efficiency of the data assimilation system. The improvements in the 3DVAR run are uniformly better as compared to the CNTL run for all the three cases. The mesoscale 3DVAR data assimilation system is not operational in the weather forecasting centers in India and a significant finding in this study is that the assimilation of Indian conventional and non-conventional observation datasets into numerical weather forecast models can help improve the simulation accuracy of meso-convective activities over the Indian monsoon region. Results from the control experiments also highlight that weather and regional climate model simulations with coarse analysis have high uncertainty in simulating heavy rain events over the Indian monsoon region and assimilation approaches, such as the 3DVAR can help reduce this uncertainty.
منابع مشابه
Improvement of Mesoscale Forecasts of Monsoon Depressions Through Assimilation of QuikSCAT Wind Data: Two Case Studies Over India
Monsoon depressions form during the Southwest Indian Monsoon over the Bay of Bengal and provide copious rainfall over the eastern and central parts of the country. Since these depressions form over sea, a region of data scarcity, satellite data provides only source of information of the meteorological system. Furthermore, for short-range prediction, it is extremely important to have accurate in...
متن کاملThe Impact of Assimilation of MODIS Observations Using WRF-VAR for the Prediction of a Monsoon Depression During September 2006
Monsoon depressions form over the sea, which is a typical data-sparse region for conventional observations. The Moderate Resolution Imaging Spectroradiometer (MODIS) provides for very high-horizontal resolution temperature and humidity soundings. Such high-resolution satellite data can improve the poorly analyzed depressions. The objective of this study is to investigate the impact of ingesting...
متن کاملA Hybrid ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment
A hybrid ensemble transform Kalman filter–three-dimensional variational data assimilation (ETKF– 3DVAR) system for the Weather Research and Forecasting (WRF) Model is introduced. The system is based on the existing WRF 3DVAR. Unlike WRF 3DVAR, which utilizes a simple, static covariance model to estimate the forecast-error statistics, the hybrid system combines ensemble covariances with the stat...
متن کاملSimulation of rainfall temporal distribution pattern using WRF Model (case study of Parsian dam basin)
During the rainfall, the intensity of precipitation varies. Changes in the amount of precipitation during an event of rainfall are effective in the resulting of flood and its intensity. Knowledge of how rainfall changes over time during rainfall is determined by temporal distribution pattern of rainfall. For this purpose, availability of short-term time scales rainfalls data are important that ...
متن کاملSpatial structures and directionalities in Monsoonal precipitation over South Asia
Precipitation during the monsoon season over the Indian subcontinent occurs in form of enormously complex spatiotemporal patterns due to the underlying dynamics of atmospheric circulation and varying topography. Employing methods from nonlinear time series analysis, we study spatial structures of the rainfall field during the summer monsoon and identify principle regions where the dynamics of m...
متن کامل