Uncoating of common cold virus is preceded by RNA switching as determined by X-ray and cryo-EM analyses of the subviral A-particle.

نویسندگان

  • Angela Pickl-Herk
  • Daniel Luque
  • Laia Vives-Adrián
  • Jordi Querol-Audí
  • Damià Garriga
  • Benes L Trus
  • Nuria Verdaguer
  • Dieter Blaas
  • José R Castón
چکیده

During infection, viruses undergo conformational changes that lead to delivery of their genome into host cytosol. In human rhinovirus A2, this conversion is triggered by exposure to acid pH in the endosome. The first subviral intermediate, the A-particle, is expanded and has lost the internal viral protein 4 (VP4), but retains its RNA genome. The nucleic acid is subsequently released, presumably through one of the large pores that open at the icosahedral twofold axes, and is transferred along a conduit in the endosomal membrane; the remaining empty capsids, termed B-particles, are shuttled to lysosomes for degradation. Previous structural analyses revealed important differences between the native protein shell and the empty capsid. Nonetheless, little is known of A-particle architecture or conformation of the RNA core. Using 3D cryo-electron microscopy and X-ray crystallography, we found notable changes in RNA-protein contacts during conversion of native virus into the A-particle uncoating intermediate. In the native virion, we confirmed interaction of nucleotide(s) with Trp(38) of VP2 and identified additional contacts with the VP1 N terminus. Study of A-particle structure showed that the VP2 contact is maintained, that VP1 interactions are lost after exit of the VP1 N-terminal extension, and that the RNA also interacts with residues of the VP3 N terminus at the fivefold axis. These associations lead to formation of a well-ordered RNA layer beneath the protein shell, suggesting that these interactions guide ordered RNA egress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viral Uncoating Is Directional: Exit of the Genomic RNA in a Common Cold Virus Starts with the Poly-(A) Tail at the 3′-End

Upon infection, many RNA viruses reorganize their capsid for release of the genome into the host cell cytosol for replication. Often, this process is triggered by receptor binding and/or by the acidic environment in endosomes. In the genus Enterovirus, which includes more than 150 human rhinovirus (HRV) serotypes causing the common cold, there is persuasive evidence that the viral RNA exits sin...

متن کامل

The Rhinovirus subviral a-particle exposes 3'-terminal sequences of its genomic RNA.

UNLABELLED Enteroviruses, which represent a large genus within the family Picornaviridae, undergo important conformational modifications during infection of the host cell. Once internalized by receptor-mediated endocytosis, receptor binding and/or the acidic endosomal environment triggers the native virion to expand and convert into the subviral (altered) A-particle. The A-particle is lacking t...

متن کامل

Analysis of a Common Cold Virus and Its Subviral Particles by Gas-Phase Electrophoretic Mobility Molecular Analysis and Native Mass Spectrometry

Gas-phase electrophoretic mobility molecular analysis (GEMMA) separates nanometer-sized, single-charged particles according to their electrophoretic mobility (EM) diameter after transition to the gas-phase via a nano electrospray process. Electrospraying as a soft desorption/ionization technique preserves noncovalent biospecific interactions. GEMMA is therefore well suited for the analysis of i...

متن کامل

Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus.

The tick-borne encephalitis (TBE) flavivirus contains two transmembrane proteins, E and M. Coexpression of E and the M precursor (prM) leads to secretion of recombinant subviral particles (RSPs). In the most common form of these RSPs, analyzed at a 19 A resolution by cryo-electron microscopy (cryo-EM), 60 copies of E pack as dimers in a T = 1 icosahedral surface lattice (outer diameter, 315 A)....

متن کامل

Uncoating Mechanism of Carnation Mottle Virus Revealed by Cryo-EM Single Particle Analysis

Genome uncoating is a prerequisite for the successful infection of plant viruses in host plants. Thus far, little is known about the genome uncoating of the Carnation mottle virus (CarMV). Here, we obtained two reconstructions of CarMV at pH7 in the presence (Ca-pH7) and absence (EDTA-pH7) of calcium ions by Cryo-EM single particle analysis, which achieved 6.4 Å and 8 Å resolutions respectively...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 50  شماره 

صفحات  -

تاریخ انتشار 2013