Anomaly Detection in Clutter using Spectrally Enhanced Ladar
نویسندگان
چکیده
Discrete return (DR) Laser Detection and Ranging (Ladar) systems provide a series of echoes that reflect from objects in a scene. These can be first, last or multi-echo returns. In contrast, Full-Waveform (FW)-Ladar systems measure the intensity of light reflected from objects continuously over a period of time. In a camouflaged scenario, e.g., objects hidden behind dense foliage, a FW-Ladar penetrates such foliage and returns a sequence of echoes including buried faint echoes. The aim of this paper is to learn local-patterns of co-occurring echoes characterised by their measured spectra. A deviation from such patterns defines an abnormal event in a forest/tree depth profile. As far as the authors know, neither DR or FW-Ladar, along with several spectral measurements, has not been applied to anomaly detection. This work presents an algorithm that allows detection of spectral and temporal anomalies in FW-Multi Spectral Ladar (FW-MSL) data samples. An anomaly is defined as a full waveform temporal and spectral signature that does not conform to a prior expectation, represented using a learnt subspace (dictionary) and set of coefficients that capture co-occurring local-patterns using an overlapping temporal window. A modified optimization scheme is proposed for subspace learning based on stochastic approximations. The objective function is augmented with a discriminative term that represents the subspace’s separability properties and supports anomaly characterisation. The algorithm detects several man-made objects and anomalous spectra hidden in a dense clutter of vegetation and also allows tree species classification.
منابع مشابه
LADAR-Based Mover Detection from Moving Vehicles
Detecting moving vehicles and people is crucial for safe operation of UGVs but is challenging in cluttered, real world environments. We propose a registration technique that enables objects to be robustly matched and tracked, and hence movers to be detected even in high clutter. Range data are acquired using a 2D scanning Ladar from a moving platform. These are automatically clustered into obje...
متن کاملAutomatic registration and visualization of occluded targets using ladar data
High-resolution 3D imaging ladar systems can penetrate foliage and camouflage to sample fragments of concealed surfaces of interest. Samples collected while the ladar moves can be integrated into a coherent object shape, provided that sensor poses are known. We detail a system for automatic data-driven registration of ladar frames, consisting of a coarse search stage, a pairwise fine registrati...
متن کاملRadar Signal Detection in K-distributed Clutter by Pade Approximation
In this paper, two suboptimum detectors are proposed for coherent radar signal detection in K-distributed clutter. Assuming certain values for several initial moments of clutter amplitude, the characteristic function of the clutter amplitude is approximated by a limited series. Using the Pade approximation, it is then converted to a rational fraction. Thus, the pdf of the clutter amplitude is o...
متن کاملRadar Signal Detection in K-distributed Clutter by Pade Approximation
In this paper, two suboptimum detectors are proposed for coherent radar signal detection in K-distributed clutter. Assuming certain values for several initial moments of clutter amplitude, the characteristic function of the clutter amplitude is approximated by a limited series. Using the Pade approximation, it is then converted to a rational fraction. Thus, the pdf of the clutter amplitude is o...
متن کاملTWO−DIMENSIONAL GARCH MODEL WITH APPLICATION TO ANOMALY DETECTION (WedPmPO4)
In this paper, we introduce a two−dimensional Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model for clutter modeling and anomaly detection. The one−dimensional GARCH model is widely used for modeling financial time series. Extending the one−dimensional GARCH model into two dimensions yields a novel clutter model which is capable of taking into account important characteris...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1602.05264 شماره
صفحات -
تاریخ انتشار 2016