When fate follows age: unequal centrosomes in asymmetric cell division

نویسندگان

  • Jose Reina
  • Cayetano Gonzalez
چکیده

A strong correlation between centrosome age and fate has been reported in some stem cells and progenitors that divide asymmetrically. In some cases, such stereotyped centrosome behaviour is essential to endow stemness to only one of the two daughters, whereas in other cases causality is still uncertain. Here, we present the different cell types in which correlated centrosome age and fate has been documented, review current knowledge on the underlying molecular mechanisms and discuss possible functional implications of this process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular mechanisms controlling asymmetric and symmetric self-renewal of cancer stem cells

Cancer stem cells (CSCs), or alternatively called tumor initiating cells (TICs), are a subpopulation of tumor cells, which possesses the ability to self-renew and differentiate into bulk tumor mass. An accumulating body of evidence suggests that CSCs contribute to the growth and recurrence of tumors and the resistance to chemo- and radiotherapy. CSCs achieve self-renewal through asymmetric divi...

متن کامل

The role of centrosomes and astral microtubules during asymmetric division of Drosophila neuroblasts.

Drosophila neuroblasts are stem cells that divide asymmetrically to produce another large neuroblast and a smaller ganglion mother cell (GMC). During neuroblast division, several cell fate determinants, such as Miranda, Prospero and Numb, are preferentially segregated into the GMC, ensuring its correct developmental fate. The accurate segregation of these determinants relies on proper orientati...

متن کامل

Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells.

Stem cell asymmetric division requires tight control of spindle orientation. To study this key process, we have recorded Drosophila larval neural stem cells (NBs) engineered to express fluorescent reporters for microtubules, pericentriolar material (PCM), and centrioles. We have found that early in the cell cycle, the two centrosomes become unequal: one organizes an aster that stays near the ap...

متن کامل

Centrosome-Associated Degradation Limits β-Catenin Inheritance by Daughter Cells after Asymmetric Division

Caenorhabditis elegans embryos rapidly diversify cell fate using a modified Wnt/β-catenin signaling strategy to carry out serial asymmetric cell divisions (ACDs). Wnt-dependent ACDs rely on nuclear asymmetry of the transcriptional coactivator SYS-1/β-catenin between daughter cells to differentially activate Wnt-responsive target genes. Here, we investigate how dynamic localization of SYS-1 to m...

متن کامل

Klp10A, a stem cell centrosome-enriched kinesin, balances asymmetries in Drosophila male germline stem cell division

Asymmetric stem cell division is often accompanied by stereotypical inheritance of the mother and daughter centrosomes. However, it remains unknown whether and how stem cell centrosomes are uniquely regulated and how this regulation may contribute to stem cell fate. Here we identify Klp10A, a microtubule-depolymerizing kinesin of the kinesin-13 family, as the first protein enriched in the stem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 369  شماره 

صفحات  -

تاریخ انتشار 2014