Residual, Restarting, and Richardson Iteration for the Matrix Exponential

نویسندگان

  • Mike A. Botchev
  • Volker Grimm
  • Marlis Hochbruck
چکیده

Abstract. A well-known problem in computing some matrix functions iteratively is a lack of a clear, commonly accepted residual notion. An important matrix function for which this is the case is the matrix exponential. Assume, the matrix exponential of a given matrix times a given vector has to be computed. We interpret the sought after vector as a value of a vector function satisfying the linear system of ordinary differential equations (ODE), whose coefficients form the given matrix. The residual is then defined with respect to the initial-value problem for this ODE system. The residual introduced in this way can be seen as a backward error. We show how the residual can efficiently be computed within several iterative methods for the matrix exponential. This completely resolves the question of reliable stopping criteria for these methods. Furthermore, we show that the residual concept can be used to construct new residual-based iterative methods. In particular, a variant of the Richardson method for the new residual appears to provide an efficient way to restart Krylov subspace methods for evaluating the matrix exponential.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residual, restarting and Richardson iteration for the matrix exponential, revised

Abstract. A well-known problem in computing some matrix functions iteratively is the lack of a clear, commonly accepted residual notion. An important matrix function for which this is the case is the matrix exponential. Suppose the matrix exponential of a given matrix times a given vector has to be computed. We develop the approach of Druskin, Greenbaum and Knizhnerman (1998) and interpret the ...

متن کامل

Locking and Restarting Quadratic Eigenvalue Solvers

This paper studies the solution of quadratic eigenvalue problems by the quadratic residual iteration method. The focus is on applications arising from nite-element simulations in acoustics. One approach is the shift-invert Arnoldi method applied to the linearized problem. When more than one eigenvalue is wanted, it is advisable to use locking or de-ation of converged eigenvectors (or Schur vect...

متن کامل

Efficient and Stable Arnoldi Restarts for Matrix Functions Based on Quadrature

When using the Arnoldi method for approximating f(A)b, the action of a matrix function on a vector, the maximum number of iterations that can be performed is often limited by the storage requirements of the full Arnoldi basis. As a remedy, different restarting algorithms have been proposed in the literature, none of which was universally applicable, efficient, and stable at the same time. We ut...

متن کامل

A study on block flexible iterative solvers with applications to Earth imaging problem in geophysics

This work is concerned with the development and study of a minimum residual norm subspace method based on the Generalized Conjugate Residual method with inner Orthogonalization (GCRO) method that allows flexible preconditioning and deflated restarting for the solution of non-symmetric or non-Hermitian linear systems. First we recall the main features of Flexible Generalized Minimum Residual wit...

متن کامل

Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations

The generalized minimum residual method (GMRES) is well known for solving large nonsymmetric systems of linear equations. It generally uses restarting, which slows the convergence. However, some information can be retained at the time of the restart and used in the next cycle. We present algorithms that use implicit restarting in order to retain this information. Approximate eigenvectors determ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2013