Attractor switching by neural control of chaotic neurodynamics.
نویسندگان
چکیده
Chaotic attractors of discrete-time neural networks include infinitely many unstable periodic orbits, which can be stabilized by small parameter changes in a feedback control. Here we explore the control of unstable periodic orbits in a chaotic neural network with only two neurons. Analytically, a local control algorithm is derived on the basis of least squares minimization of the future deviations between actual system states and the desired orbit. This delayed control allows a consistent neural implementation, i.e. the same types of neurons are used for chaotic and controlling modules. The control signal is realized with one layer of neurons, allowing selective switching between different stabilized periodic orbits. For chaotic modules with noise, random switching between different periodic orbits is observed.
منابع مشابه
F Ur Mathematik in Den Naturwissenschaften Leipzig Attractor Switching by Neural Control of Chaotic Neurodynamics Attractor Switching by Neural Control of Chaotic Neurodynamics
Chaotic attractors of discrete-time neural networks include innnitely many unstable periodic orbits, which can be stabilized by small parameter changes in a feedback control. Here we explore the control of unstable periodic orbits in a chaotic neural network with only two neurons. Analytically a local control algorithm is derived on the basis of least squares minimization of the future deviatio...
متن کاملبهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه
In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...
متن کاملAttractor systems and analog computation
Attractor systems are useful in neurodynamics, mainly in the modeling of associative memory. This paper presents a complexity theory for continuous phase space dynamical systems with discrete or continuous time update, which evolve to attractors. In our framework we associate complexity classes with different types of attractors. Fixed points belong to the class BPPd, while chaotic attractors a...
متن کاملAttractor Based Analysis of Centrally Cracked Plate Subjected to Chaotic Excitation
The presence of part-through cracks with limited length is one of the prevalent defects in the plate structures. Due to the slight effect of this type of damages on the frequency response of the plates, conventional vibration-based damage assessment could be a challenging task. In this study for the first time, a recently developed state-space method which is based on the chaotic excitation is ...
متن کاملChaotic itinerancy and its roles in cognitive neurodynamics.
Chaotic itinerancy is an autonomously excited trajectory through high-dimensional state space of cortical neural activity that causes the appearance of a temporal sequence of quasi-attractors. A quasi-attractor is a local region of weakly convergent flows that represent ordered activity, yet connected to divergent flows representing disordered, chaotic activity between the regions. In a cogniti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Network
دوره 9 4 شماره
صفحات -
تاریخ انتشار 1998