Disorder to Order Transition and Ordered Morphology of Coil-Comb Block Copolymer by Self-Consistent Field Theory

نویسندگان

  • Zhibin Jiang
  • Zhiyuan Qian
  • Hong Yang
  • Rong Wang
چکیده

The disorder to order transition and the ordered patterns near the disordered state of coil-comb copolymer A-b-(B m + 1-g-C m ) are investigated by the self-consistent field theory. The phase diagrams of coil-comb copolymer are obtained by varying the composition of the copolymer with the side chain number m = 1, 2, and 3. The disorder to order transition is far more complex compared with the comb copolymer or linear block copolymer. As the side chain number m increases, the Flory-Huggins interaction parameter of disorder to order transition (DOT) increases and the lowest DOT occurs when the volume fractions of blocks A, B, and C are approximately equal. When one component is the minority, the disorder to order transition curve is similar with binary copolymer, but the curve shows the asymmetric property. The comb copolymer is more stable with larger side chain number m and shorter side chain. The ordered patterns from the disordered state are discussed. The results are helpful for designing coil-comb copolymers and obtaining the ordered morphology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoparticle-Regulated Phase Behavior of Ordered Block Copolymers

Although block copolymer motifs have received considerable attention as supramolecular templates for inorganic nanoparticles, experimental observations of a nanostructured diblock copolymer containing inorganic nanoparticles-supported by theoretical trends predicted from a hybrid self-consistent field/density functional theory-confirm that nanoparticle size and selectivity can likewise stabiliz...

متن کامل

Universalization of the Phase Diagram for a Model Rod-Coil Diblock Copolymer

The Flory-Huggins interaction is measured for a model rod-coil block copolymer system, poly(alkoxyphenylenevinylene-b-isoprene), by fitting the interfacial segregation of block copolymer to a homopolymer interface and by using the random phase approximation (RPA) for block copolymers. The measured interfacial segregation of a block copolymer to the interface between homopolymers, fit with a sel...

متن کامل

Well-Ordered Polymer Melts with 5 nm Lamellar Domains from Blends of a Disordered Block Copolymer and a Selectively Associating Homopolymer of Low or High Molar Mass

The use of short chain block copolymer melts as nanostructured templates with sub-10 nm domains is often limited by their low segregation strength ( N). Since increasing molar mass to strengthen segregation also increases the interdomain spacing of block copolymer melts, it is more desirable to increase the Flory-Huggins segment-segment interaction parameter, , to produce strong segregation. We...

متن کامل

Insights into ordered microstructures and ordering mechanisms of ABC star terpolymers by integrating dynamic self-consistent field theory and variable cell shape methods.

A theoretical approach coupling dynamic self-consistent field (SCF) theory for inhomogeneous polymeric fluids and variable cell shape (VCS) method for automatically adjusting cell shape and size is developed to investigate ordered microstructures and the ordering mechanisms of block copolymer melts. Using this simulation method, we first re-examined the microphase separation of the simplest AB ...

متن کامل

Ordering at two length scales in comb - coil diblock copolymers consisting of only two different monomers

The microphase separated morphology of a melt of a specific class of comb-coil diblock copolymers, consisting of an AB comb block and a linear homopolymer A block, is analyzed in the weak segregation limit. On increasing the length of the homopolymer A block, the systems go through a characteristic series of structural transitions. Starting from the pure comb copolymer the first series of struc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015