Convex optimization methods for model reduction
نویسنده
چکیده
Model reduction and convex optimization are prevalent in science and engineering applications. In this thesis, convex optimization solution techniques to three different model reduction problems are studied. Parameterized reduced order modeling is important for rapid design and optimization of systems containing parameter dependent reducible sub-circuits such as interconnects and RF inductors. The first part of the thesis presents a quasi-convex optimization approach to solve the parameterized model order reduction problem for linear time-invariant systems. Formulation of the model reduction problem as a quasi-convex program allows the flexibility to enforce constraints such as stability and passivity in both non-parameterized and parameterized cases. Numerical results including the parameterized reduced modeling of a large RF inductor are given to demonstrate the practical value of the proposed algorithm. A majority of nonlinear model reduction techniques can be regarded as a two step procedure as follows. First the state dimension is reduced through a projection, and then the vector field of the reduced state is approximated for improved computation efficiency. Neither of the above steps has been thoroughly studied. The second part of this thesis presents a solution to a particular problem in the second step above, namely, finding an upper bound of the system input/output error due to nonlinear vector field approximation. The system error upper bounding problem is formulated as an L2 gain upper bounding problem of some feedback interconnection, to which the small gain theorem can be applied. A numerical procedure based on integral quadratic constraint analysis and a theoretical statement based on L2 gain analysis are given to provide the solution to the error bounding problem. The numerical procedure is applied to analyze the vector field approximation quality of a transmission line with diodes. The application of Volterra series to the reduced modeling of nonlinear systems is hampered by the rapidly increasing computation cost with respect to the degrees of the polynomials used. On the other hand, while it is less general than the Volterra series model, the Wiener-Hammerstein model has been shown to be useful for accurate and compact modeling of certain nonlinear sub-circuits such as power amplifiers. The third part of the thesis presents a convex optimization solution technique to the reduction/identification of the Wiener-Hammerstein system. The identification problem is formulated as a non-convex 3 quadratic program, which is solved by a semidefinite programming relaxation technique. It is demonstrated in the thesis that the formulation is robust with respect to noisy measurement, and the relaxation technique is oftentimes sufficient to provide good solutions. Simple examples are provided to demonstrate the use of the proposed identification algorithm. Thesis Supervisor: Luca Daniel Title: Associate Professor Thesis Supervisor: Alexandre Megretski Title: Professor
منابع مشابه
Particle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems
The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملCVaR Reduced Fuzzy Variables and Their Second Order Moments
Based on credibilistic value-at-risk (CVaR) of regularfuzzy variable, we introduce a new CVaR reduction method fortype-2 fuzzy variables. The reduced fuzzy variables arecharacterized by parametric possibility distributions. We establishsome useful analytical expressions for mean values and secondorder moments of common reduced fuzzy variables. The convex properties of second order moments with ...
متن کاملA numerical approach for optimal control model of the convex semi-infinite programming
In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.
متن کاملEfficient Optimization for Discriminative Latent Class Models
Dimensionality reduction is commonly used in the setting of multi-label supervised classification to control the learning capacity and to provide a meaningful representation of the data. We introduce a simple forward probabilistic model which is a multinomial extension of reduced rank regression, and show that this model provides a probabilistic interpretation of discriminative clustering metho...
متن کاملOn High-order Model Regularization for Constrained Optimization
In two recent papers regularization methods based on Taylor polynomial models for minimization were proposed that only rely on Hölder conditions on the higher order employed derivatives. Grapiglia and Nesterov considered cubic regularization with a sufficient descent condition that uses the current gradient and resembles the classical Armijo’s criterion. Cartis, Gould, and Toint used Taylor mod...
متن کامل