Unsupervised evaluation of speaker verification systems
نویسندگان
چکیده
A method for blind estimation of DET curves for speaker verification systems is proposed. Verification error probabilities are estimated on a database where speaker identities are unknown. The database must provide a set of impostor-only tests as well as a set of mixed impostor and target tests. This method is tested on 9 speaker verification systems that were scored on the NIST 2000 database. Good DET estimates are obtained for systems with low error rates, while poorer estimates are obtained for systems with high error rates.
منابع مشابه
Using Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems
Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.
متن کاملComparison between supervised and unsupervised learning of probabilistic linear discriminant analysis mixture models for speaker verification
We present a comparison of speaker verification systems based on unsupervised and supervised mixtures of probabilistic linear discriminant analysis (PLDA) models. This paper explores current applicability of unsupervised mixtures of PLDA models with Gaussian priors in a total variability space for speaker verification. Moreover, we analyze the experimental conditions under which this applicatio...
متن کاملUsing Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems
Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.
متن کاملPerformance improvement of connected digit recognition using unsupervised fast speaker adaptation
In this paper, we investigate unsupervised fast speaker adaptation based on eigenvoice to improve the performance of Korean connected digit recognition over the telephone channel. In addition, utterance verification is introduced into speaker adaptation to examine whether input utterance is appropriate to adaptation or not. Performance evaluation showed that the proposed method yielded performa...
متن کاملUnsupervised Discriminative Training of PLDA for Domain Adaptation in Speaker Verification
This paper presents, for the first time, unsupervised discriminative training of probabilistic linear discriminant analysis (unsupervised DT-PLDA). While discriminative training avoids the problem of generative training based on probabilistic model assumptions that often do not agree with actual data, it has been difficult to apply it to unsupervised scenarios because it can fit data with almos...
متن کامل