Programmable Control of Nucleation for Algorithmic Self-assembly
نویسندگان
چکیده
Algorithmic self-assembly, a generalization of crystal growth processes, has been proposed as a mechanism for autonomous DNA computation and for bottom-up fabrication of complex nanostructures. A ‘program’ for growing a desired structure consists of a set of molecular ‘tiles’ designed to have specific binding interactions. A key challenge to making algorithmic self-assembly practical is designing tile set programs that make assembly robust to errors that occur during initiation and growth. One method for the controlled initiation of assembly, often seen in biology, is the use of a seed or catalyst molecule which reduces an otherwise large kinetic barrier to nucleation. Here, we show how to program algorithmic self-assembly similarly, such that seeded assembly proceeds quickly, but there is an arbitrarily large kinetic barrier to unseeded growth. We demonstrate this by introducing a family of tile sets for which we rigorously prove that, under the right physical conditions, increasing the size of the tile set by a constant amount exponentially reduces the rate of spurious nucleation. Simulations of these ‘zig-zag’ tile sets suggest that under plausible experimental conditions, it is possible to grow seeded crystals in just a few hours such that less than 1 percent of crystals are spuriously nucleated. Simulation results also suggest that zig-zag tile sets could be used for detection of single DNA strands. Along with prior work on constructing tile sets that are robust to assembly errors during growth, this work is a step toward understanding how algorithmic self-assembly can be performed with low error rates without a significant reduction in assembly speed.
منابع مشابه
Study of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory
Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...
متن کاملStudy of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory
Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...
متن کاملDirecting self-assembly of DNA nanotubes using programmable seeds.
Control over when and where nanostructures arise is essential for the self-assembly of dynamic or multicomponent devices. We design and construct a DNA origami seed for the control of DAE-E tile DNA nanotube assembly. Seeds greatly accelerate nanotube nucleation and growth because they serve as nanotube nucleation templates. Seeds also control nanotube circumference. Simulations predict nanotub...
متن کاملSynthesis of crystals with a programmable kinetic barrier to nucleation.
A central goal of chemistry is to fabricate supramolecular structures of defined function and composition. In biology, control of supramolecular synthesis is often achieved through precise control over nucleation and growth processes: A seed molecule initiates growth of a structure, but this growth is kinetically inhibited in the seed's absence. Here we show how such control can be systematical...
متن کاملReducing facet nucleation during algorithmic self-assembly.
Algorithmic self-assembly, a generalization of crystal growth, has been proposed as a mechanism for bottom-up fabrication of complex nanostructures and autonomous DNA computation. In principle, growth can be programmed by designing a set of molecular tiles with binding interactions that enforce assembly rules. In practice, however, errors during assembly cause undesired products, drastically re...
متن کامل