Long-term evolution and gravitational wave radiation of neutron stars with differential rotation induced by r-modes
نویسندگان
چکیده
In a second-order r-mode theory, Sá & Tomé found that the r-mode oscillation in neutron stars (NSs) could induce stellar differential rotation, which leads to a saturation state of the oscillation spontaneously. Based on a consideration of the coupling of the rmodes and the stellar spin and thermal evolutions, we carefully investigate the influences of the r-mode-induced differential rotation on the long-term evolutions of isolated NSs and NSs in low-mass X-ray binaries, where the viscous damping of the r-modes and its resultant effects are taken into account. The numerical results show that, for both kinds of NSs, the differential rotation can prolong the duration of the r-mode saturation state significantly. As a result, the stars can keep nearly constant temperature and angular velocity over a thousand years. Moreover, due to the long-term steady rotation of the stars, persistent quasi-monochromatic gravitational wave radiation could be expected, which increases the detectibility of gravitational waves from both nascent and accreting old NSs.
منابع مشابه
R-Mode Oscillations and Spindown of Young Rotating Magnetic Neutron Stars
Recent work has shown that a young, rapidly rotating neutron star loses angular momentum to gravitational waves generated by unstable r-mode oscillations. We study the spin evolution of a young, magnetic neutron star including both the effects of gravitational radiation and magnetic braking (modeled as magnetic dipole radiation). Our phenomenological description of nonlinear r-modes is similar ...
متن کاملInertial modes of slowly rotating isentropic stars
We investigate inertial mode oscillations of slowly and uniformly rotating, isentropic, Newtonian stars. Inertial mode oscillations are induced by the Coriolis force due to the star’s rotation, and their characteristic frequencies are comparable with the rotation frequency Ω of the star. So called r-mode oscillations form a sub-class of the inertial modes. In this paper, we use the term “r-mode...
متن کاملGravitational Waves from Phase-transition Induced Collapse of Neutron Stars
We study the gravitational radiation from gravitational collapses of rapidly rotating neutron stars induced by a phase-transition from normal nuclear matter to a mixed phase of quark and nuclear matter in the core of the stars. The study is based on self-consistent three dimensional hydrodynamic simulations with Newtonian gravity and a high resolution shock capturing scheme, and the quadrupole ...
متن کاملR-modes in Accreting and Young Neutron Stars
Recent work has raised the exciting possibility that r-mode pulsations (Rossby waves) in rotating neutron star cores may be strong gravitational wave sources. Rapidly rotating young neutron stars born in supernovae enter the r-mode instability region within the first minutes of their lives and may spin down by substantial amounts due to gravitational radiation from r-modes. Accreting neutron st...
متن کاملNonlinear evolution of the r-modes in neutron stars.
The evolution of a neutron-star r-mode driven unstable by gravitational radiation is studied here using numerical solutions of the full nonlinear fluid equations. The dimensionless amplitude of the mode grows to order unity before strong shocks develop which quickly damp the mode. In this simulation the star loses about 40% of its initial angular momentum and 50% of its rotational kinetic energ...
متن کامل