A pseudo - monotonicity adapted to doubly nonlinear elliptic - parabolic equations
نویسندگان
چکیده
Pseudo-monotonicity seems to be a good notion to deal with convergence in non-linear terms of partial differential equations. J.-L. Lions [16] used two different definitions of pseudo-monotonicity for elliptic and parabolic problems, and derived associated existence results. Nonlinear elliptic-parabolic equations are intermediate equations for which an intermediate pseudo-monotonicity is defined and an existence result is proved, extending previous results of H.
منابع مشابه
UP Partial Differential Equations
COURSE DESCRIPTION The course is an introduction to the study of partial differential equations (PDEs) using functional analysis and energy methods. Questions of existence, uniqueness and regularity for weak solutions to linear elliptic and parabolic PDEs will be emphasized. Various nonlinear PDEs will also be studied, using a variety of different approaches, like variational and monotonicity m...
متن کاملThe maximum principles and symmetry results for viscosity solutions of fully nonlinear equations
This paper is concerned about maximum principles and radial symmetry for viscosity solutions of fully nonlinear partial differential equations. We obtain the radial symmetry and monotonicity properties for nonnegative viscosity solutions of F ( D2u ) + u = 0 in R (0.1) under the asymptotic decay rate u = o(|x|− 2 p−1 ) at infinity, where p > 1 (Theorem 1, Corollary 1). As a consequence of our s...
متن کاملMixed Interior Penalty Discontinuous Galerkin Methods for One-dimensional Fully Nonlinear Second Order Elliptic and Parabolic Equations
This paper is concerned with developing accurate and efficient numerical methods for one-dimensional fully nonlinear second order elliptic and parabolic partial differential equations (PDEs). In the paper we present a general framework for constructing high order interior penalty discontinuous Galerkin (IP-DG) methods for approximating viscosity solutions of these fully nonlinear PDEs. In order...
متن کاملLocal Discontinuous Galerkin Methods for One-Dimensional Second Order Fully Nonlinear Elliptic and Parabolic Equations
This paper is concerned with developing accurate and efficient nonstandard discontinuous Galerkin methods for fully nonlinear second order elliptic and parabolic partial differential equations (PDEs) in the case of one spatial dimension. The primary goal of the paper to develop a general framework for constructing high order local discontinuous Galerkin (LDG) methods for approximating viscosity...
متن کاملThe Linearized Crocco Equation
In this paper, we study the existence and uniqueness of a degenerate parabolic equation, with nonhomogeneous boundary conditions, coming from the linearization of the Crocco equation [12]. The Crocco equation is a nonlinear degenerate parabolic equation obtained from the Prandtl equations with the so-called Crocco transformation. The linearized Crocco equation plays a major role in stabilizatio...
متن کامل