Associative Triples and Yang-baxter Equation

نویسنده

  • Andrei Mudrov
چکیده

We introduce triples of associative algebras as a tool for building solutions to the Yang-Baxter equation. It turns out that the class of R-matrices thus obtained is related to the Hecke condition whose generalization subject to an associative triple is proposed. R-matrices for a wide class of Belavin-Drinfel’d triples for the sln(C) Lie algebras are derived.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-operators on Associative Algebras and Associative Yang-baxter Equations

We introduce the concept of an extended O-operator that generalizes the wellknown concept of a Rota-Baxter operator. We study the associative products coming from these operators and establish the relationship between extended O-operators and the associative Yang-Baxter equation, extended associative Yang-Baxter equation and generalized Yang-Baxter equation.

متن کامل

Classical Yang-Baxter equation and the A∞-constraint

We show that elliptic solutions of classical Yang-Baxter equation (CYBE) can be obtained from triple Massey products on elliptic curve. We introduce the associative version of this equation which has two spectral parameters and construct its elliptic solutions. We also study some degenerations of these solutions.

متن کامل

Massey Products on Cycles of Projective Lines and Trigonometric Solutions of the Yang-baxter Equations

We show that a nondegenerate unitary solution r(u, v) of the associative Yang-Baxter equation (AYBE) for Mat(N, C) (see [4]) with the Laurent series at u = 0 of the form r(u, v) = 1⊗1 u + r0(v) + . . . satisfies the quantum Yang-Baxter equation, provided the projection of r0(v) to slN ⊗ slN has a period. We classify all such solutions of the AYBE extending the work of Schedler [5]. We also char...

متن کامل

Hom-quantum Groups Ii: Cobraided Hom-bialgebras and Hom-quantum Geometry

A class of non-associative and non-coassociative generalizations of cobraided bialgebras, called cobraided Hom-bialgebras, is introduced. The non-(co)associativity in a cobraided Hom-bialgebra is controlled by a twisting map. Several methods for constructing cobraided Hombialgebras are given. In particular, Hom-type generalizations of FRT quantum groups, including quantum matrices and related q...

متن کامل

Double Constructions of Frobenius Algebras and Connes 2-cocycles and Their Duality

We construct an associative algebra with a decomposition into the direct sum of the underlying vector spaces of another associative algebra and its dual space such that both of them are subalgebras and the natural symmetric bilinear form is invariant or the natural antisymmetric bilinear form is a Connes 2-cocycle. The former is called a double construction of Frobenius algebra and the latter i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000