Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars.

نویسندگان

  • Hanwei Gao
  • Chong Liu
  • Hoon Eui Jeong
  • Peidong Yang
چکیده

Photocatalytic water splitting represents a promising way to produce renewable hydrogen fuel from solar energy. Ultrathin semiconductor electrodes for water splitting are of particular interest because the optical absorption occurs in the region where photogenerated charge carriers can effectively contribute to the chemical reactions on the surface. It is therefore important to manipulate and concentrate the incident light so that more photons can be absorbed within the thin film. Here we show an enhanced photocurrent in a thin-film iron oxide photoanode coated on arrays of Au nanopillars. The enhancement can be attributed primarily to the increased optical absorption originating from both surface plasmon resonances and photonic-mode light trapping in the nanostructured topography. The resonances can be tuned to a desirable wavelength by varying the thickness of the iron oxide layer. A net enhancement as high as 50% was observed over the solar spectrum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphitic Carbon Nitride/Reduced Graphene Oxide/Silver Oxide Nanostructures with Enhanced Photocatalytic Activity in Visible Light

Visible light active graphitic carbon nitride/reduced graphene oxide/silver oxide nanocomposites with a p-n heterojunction structure were synthesized by chemical deposition methods. Prepared samples were characterized by different physico-chemical technics such as XRD, FTIR, SEM, TEM and DRS. Photocatalytic activity investigated by analyzing the Acid blue 92 (AB92) concentration during the time...

متن کامل

Design and application of Au decorated ZnO/TiO2 as a stable photocatalyst for wide spectral coverage.

A ternary nanostructured photocatalyst consisting of ZnO/TiO2/Au was designed to achieve an enhanced solar absorption due to the coupling of surface enhanced plasmonic absorption of metal and semiconductor excitons. TiO2 coated ZnO rods with an aspect ratio of 8-12 were decorated with citrate capped gold nanoparticles for photocatalytic degradation of organic pollutants in simulated waste water...

متن کامل

Primary analysis for enhancing the iron oxide and alteration minerals, using ETM+ data: a case study of Kuh-e-Zar gold deposit, NE Iran

Different types of iron oxides deposits have been identified along the Khaf – Dorouneh volcanic and plutonic belt in north east of Iran. Kuh-e-Zar is one of these ore deposits known as Fe- oxide gold deposit. The main purpose of this paper is to detect and discriminate the iron oxide minerals in this area based on the ETM+ data. Data processing has been done by ENVI (Environment for Visualizing...

متن کامل

UV and visible light photocatalytic activity of Au/TiO2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations

To magnify anatase/rutile phase junction effects through appropriate Au decorations, a facile solution-based approach was developed to synthesize Au/TiO2 nanoforests with controlled Au locations. The nanoforests cons®isted of anatase nanowires surrounded by radially grown rutile branches, on which Au nanoparticles were deposited with preferred locations controlled by simply altering the order o...

متن کامل

Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis.

Action spectrum analyses showed that visible light-induced oxidation of 2-propanol by aerated gold-modified titanium(IV) oxide (titania) suspensions is initiated by excitation of gold surface plasmon, and polychromatic irradiation experiments revealed that the photocatalytic reaction rate depends strongly on properties of titania, such as particle size, surface area and crystalline form (anatas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2012