Insulin-Like Growth Factor Replacement Therapy for Diabetic Neuropathy: Experimental Basis

نویسندگان

  • Douglas N. Ishii
  • Sean B. Lupien
چکیده

INTRODUCTION Diabetic neurological complications continue to progress in a substantial fraction of patients despite best efforts at glycemic control. The development of adjuvant treatments to supplement diet, exercise, oral hypoglycemic agents, and insulin is urgently needed and may do much to enhance the quality of patient life. The neurobiology of insulin-like growth factors (IGFs) has been studied in animals, and a loss of IGF activity produces neurological disorders that mimic the disturbances of diabetic neuropathy. The theory that a decline in IGF neurotrophic activity is pathogenic for diabetic neuropathy has efficiently generated many testable hypotheses. The theory predicts and tests show that IGF levels are reduced in diabetic primates, including humans, and that IGF gene expression is reduced throughout the peripheral and central nervous system in diabetic rodents. Tests further show that replacement doses of IGFs can prevent an array of diabetic neurological disturbances in the peripheral and central nervous system. These data point to a common etiology for central and peripheral neurological disturbances. It is of considerable practical and theoretical interest that IGF treatment is effective independently of ongoing hyperglycemia and metabolic imbalance. These observations are in line with emerging clinical data showing that new drugs can be devel-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insulin-like growth factor (IGF) gene expression is reduced in neural tissues and liver from rats with non-insulin-dependent diabetes mellitus, and IGF treatment ameliorates diabetic neuropathy.

Neural disturbances are observed in the peripheral and central nervous systems of patients with insulin-dependent diabetes mellitus (IDDM) and non-IDDM (NIDDM). Insulin-like growth factors (IGFs) are neurotrophic growth factors that can support nerve regeneration and neuronal survival in the types of neurons known to be afflicted in diabetes. We tested the hypotheses that IGF gene expression is...

متن کامل

Proinsulin C-peptide replacement in type 1 diabetic BB/Wor-rats prevents deficits in nerve fiber regeneration.

We recently reported that early gene responses and expression of cytoskeletal proteins are perturbed in regenerating nerve in type 1 insulinopenic diabetes but not in type 2 hyperinsulinemic diabetes. We hypothesized that these differences were due to impaired insulin action in the former type of diabetes. To test this hypothesis, type 1 diabetic BB/Wor-rats were replaced with proinsulin C-pept...

متن کامل

The effect of aerobic training on the control of high blood sugar levels, insulin sensitivity and frequency content of ground reaction forces during running in patients with diabetic peripheral neuropathy

Introduction: Failure to control glucose levels for a long time leads to various complications, including neuropathy and decreased muscle mass. Our aim was to investigate the effect of controlling high blood sugar levels and improving insulin sensitivity following aerobic exercise on changes in lean body mass and frequency of ground reaction forces during running in patients with diabetic neuro...

متن کامل

A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells.

The insulinotropic hormone glucagon-like peptide-1 (7-36)-amide (GLP-1) has potent effects on glucose-dependent insulin secretion, insulin gene expression, and pancreatic islet cell formation and is presently in clinical trials as a therapy for type 2 diabetes mellitus. We report on the effects of GLP-1 and two of its long-acting analogs, exendin-4 and exendin-4 WOT, on neuronal proliferation a...

متن کامل

Role of Neuropoietic Cytokines in Development and Progression of Diabetic Polyneuropathy: From Glucose Metabolism to Neurodegeneration

Diabetic neuropathy develops as a result of hyperglycemia-induced local metabolic and microvascular changes in both type I and type II diabetes mellitus. Diabetic neuropathy shows slower impulse conduction, axonal degeneration, and impaired regeneration. Diabetic neuropathy affects peripheral, central, and visceral sensorimotor and motor nerves, causing improper locomotor and visceral organ dys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental Diabesity Research

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2003