Force and flexibility of flailing myxobacteria.

نویسنده

  • Charles W Wolgemuth
چکیده

Myxococcus xanthus is a common Gram-negative bacterium that moves by a process called gliding motility. In myxobacteria, two distinct mechanisms for gliding have been discovered. S-type motility requires the extension, attachment, and retraction of type IV pili. The other mechanism, designated as A-type motility, may be driven by the secretion and swelling of slime; however, experiments to confirm or refute this model are still lacking and the force exerted by this mechanism has not been measured. A previously published experiment found that when an M. xanthus cell became stuck at one end, the cell underwent flailing motions. Based on this experiment, I propose an elastic model that can estimate the force produced by the A-motility engine and the bending modulus of a single myxobacterial cell. The model estimates a bending modulus of 3 x 10(-14) erg cm and a force between 50-150 pN. This force is comparable to that predicted by slime extrusion, and the bending modulus is 30-fold smaller than that measured in Bacillus subtilis. This model suggests experiments that can further quantify this process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of growth inhibition activity of myxobacterial extracts against multi-drug resistant Acinetobacter baumannii

The worldwide dissemination of multi drug resistant Acinetobacter baumannii strains has caused serious concern and high rate of mortality in recent decades that originate from limited effective antibiotics in the treatment of A. baumannii infections. Myxobacteria are Gram-negative bacteria that are important for their complex lifestyle and production of novel structurally secondary metabolites ...

متن کامل

Approach to Analyze the Diversity of Myxobacteria in Soil by Semi-Nested PCR-Denaturing Gradient Gel Electrophoresis (DGGE) Based on Taxon-Specific Gene

The genotypic diversity of insoluble macromolecules degraded myxobacteria, provided an opportunity to discover new bacterial resources and find new ecological functions. In this study, we developed a semi-nested-PCR-denaturing gradient gel electrophoresis (DGGE) strategy to determine the presence and genotypic diversity of myxobacteria in soil. After two rounds of PCR with myxobacteria-specific...

متن کامل

Flexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot

This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...

متن کامل

The effect of support parameters on the force transmissibility of a flexible rotor

Rotating machinery support design with the aim of reducing the force transmitted to the foundation has significant importance regarding the various applications of these machineries. In this paper presents a rapid approximate method for calculating the optimum support flexibility and damping of flexible rotors to minimize force transmissibility in the vicinity of the rotor first critical speed....

متن کامل

Interactions Between Myxobacteria, Plant Pathogenic Fungi, and Biocontrol Agents

Myxobacteria are gram-negative, unicellular bacteria with rod-shaped vegetative cells. They are unique among prokaryotes for using intercellular communication to engage in cooperative morphogenesis from which they produce fruiting bodies bearing resistant myxospores (5). Thick-walled myxospores are responsible for the survival of myxobacteria under unfavorable conditions such as desiccation, hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 89 2  شماره 

صفحات  -

تاریخ انتشار 2005