Convergence of a Finite Difference Scheme for the Camassa-Holm Equation

نویسندگان

  • Helge Holden
  • Xavier Raynaud
چکیده

We prove that a certain finite difference scheme converges to the weak solution of the Cauchy problem on a finite interval with periodic boundary conditions for the Camassa– Holm equation ut−uxxt +3uux−2uxuxx−uuxxx = 0 with initial data u|t=0 = u0 ∈ H1([0, 1]). Here it is assumed that u0 − u′′ 0 ≥ 0 and in this case, the solution is unique, globally defined, and energy preserving.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Convergent Finite Difference Scheme for the Camassa-Holm Equation with General H1 Initial Data

We suggest a finite dfference scheme for the Camassa-Holm equation that can handle general H1 initial data. The form of the difference scheme is judiciously chosen to ensure that it satisfies a total energy inequality. We prove that the difference scheme converges strongly in H1 towards an exact dissipative weak solution of Camassa-Holm equation.

متن کامل

A Convergent Finite Difference Scheme for the Camassa-holm Equation with General H Initial Data

We suggest a finite dfference scheme for the Camassa-Holm equation that can handle general H1 initial data. The form of the difference scheme is judiciously chosen to ensure that it satisfies a total energy inequality. We prove that the difference scheme converges strongly in H1 towards an exact dissipative weak solution of Camassa-Holm equation.

متن کامل

An Explicit Finite Difference Scheme for the Camassa-holm Equation

We put forward and analyze an explicit finite difference scheme for the Camassa-Holm shallow water equation that can handle general H1 initial data and thus peakon-antipeakon interactions. Assuming a specified condition restricting the time step in terms of the spatial discretization parameter, we prove that the difference scheme converges strongly in H1 towards a dissipative weak solution of C...

متن کامل

On Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method

The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...

متن کامل

ar X iv : 0 80 2 . 31 29 v 1 [ m at h . A P ] 2 1 Fe b 20 08 AN EXPLICIT FINITE DIFFERENCE SCHEME FOR THE CAMASSA - HOLM EQUATION

We put forward and analyze an explicit finite difference scheme for the Camassa-Holm shallow water equation that can handle general H initial data and thus peakon-antipeakon interactions. Assuming a specified condition restricting the time step in terms of the spatial discretization parameter, we prove that the difference scheme converges strongly in H towards a dissipative weak solution of Cam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2006