Control of retinal ganglion cell axon growth: a new role for Sonic hedgehog.
نویسندگان
چکیده
Retinal ganglion cell (RGC) axons grow towards the diencephalic ventral midline during embryogenesis guided by cues whose nature is largely unknown. We provide in vitro and in vivo evidence for a novel role of Sonic hedgehog (SHH) as a negative regulator of growth cone movement. SHH suppresses both the number and the length of neurites emerging from the chick retina but not from neural tube or dorsal root ganglia explants, without interfering with their rate of proliferation and differentiation. Similarly, retroviral-mediated ectopic expression of Shh along the chick visual pathway greatly interferes the growth of RGC axons. Upon SHH addition to grown neurites, the intracellular level of cAMP decreases, suggesting that the dampening of growth cone extension mediated by SHH may involve interaction with its receptor Patched which is expressed by RGC. Based on these findings, we propose that Shh expression at the chiasm border defines a constrained pathway within the ventral midline which serves to guide the progression of RGC axons.
منابع مشابه
Sonic hedgehog has a dual effect on the growth of retinal ganglion axons depending on its concentration.
The stereotypical projection of retinal ganglion cell (RGC) axons to the optic disc has served as a good model system for studying axon guidance. By both in vitro and in vivo experiments, we show that a secreted molecule, Sonic hedgehog (Shh), may play a critical role in the process. It is expressed in a dynamic pattern in the ganglion cell layer with a relatively higher expression in the cente...
متن کاملRetinal ganglion cell-derived sonic hedgehog signaling is required for optic disc and stalk neuroepithelial cell development.
The development of optic stalk neuroepithelial cells depends on Hedgehog (Hh) signaling, yet the source(s) of Hh protein in the optic stalk is unknown. We provide genetic evidence that sonic hedgehog (Shh) from retinal ganglion cells (RGCs) promotes the development of optic disc and stalk neuroepithelial cells. We demonstrate that RGCs express Shh soon after differentiation, and cells at the op...
متن کاملA role for Sonic hedgehog in axon-to-astrocyte signalling in the rodent optic nerve.
Retinal ganglion cell (RGC) axons have been shown to stimulate the proliferation of astrocytes in the developing rodent optic nerve, but the signals that mediate this effect have not been identified. The following findings suggest that Sonic hedgehog (Shh) is one of the signals. (1) RGCs express both Shh mRNA and protein, whereas the optic nerve contains the protein but not the mRNA. (2) Astroc...
متن کاملNeural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study
Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...
متن کاملSonic hedgehog is indirectly required for intraretinal axon pathfinding by regulating chemokine expression in the optic stalk.
Successful axon pathfinding requires both correct patterning of tissues, which will later harbor axonal tracts, and precise localization of axon guidance cues along these tracts at the time of axon outgrowth. Retinal ganglion cell (RGC) axons grow towards the optic disc in the central retina, where they turn to exit the eye through the optic nerve. Normal patterning of the optic disc and stalk ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 128 20 شماره
صفحات -
تاریخ انتشار 2001