General Relativistic Magnetohydrodynamic Simulations of Black Hole Accretion Disks
نویسنده
چکیده
Observations are providing increasingly detailed quantitative information about the accretion flows that power such high energy systems as X-ray binaries and active galactic nuclei. Analytic models of such systems must rely on assumptions such as regular flow geometry and a simple, parameterized stress. Global numerical simulations offer a way to investigate the basic physical dynamics of accretion flows without these assumptions. For black hole accretion studies one solves the equations of general relativistic magnetohydrodynamics. Magnetic fields are of fundamental importance to the structure and evolution of accretion disks because magnetic turbulence is the source of the anomalous stress that drives accretion. We have developed a three-dimensional general relativistic magnetohydrodynamic simulation code to evolve time-dependent accretion systems self-consistently. Recent global simulations of black hole accretion disks suggest that the generic structure of the accretion flow is usefully divided into five regimes: the main disk, the inner disk, the corona, the evacuated funnel, and the funnel wall jet. The properties of each of these regions are summarized.
منابع مشابه
Global Three-Dimensional MHD Simulations of Black Hole Accretion Disks: X-ray Flares in the Plunging Region
We present the results of three-dimensional global resistive magnetohydrodynamic (MHD) simulations of black hole accretion flows. General relativistic effects are simulated by using the pseudo-Newtonian potential. Initial state is an equilibrium model of a torus threaded by weak toroidal magnetic fields. As the magnetorotational instability (MRI) grows in the torus, mass accretes to the black h...
متن کاملGeneral Relativistic Simulations of Jet Formation in a Rapidly Rotating Black Hole Magnetosphere
To investigate the formation mechanism of relativistic jets in active galactic nuclei and micro-quasars, we have developed a new general relativistic magnetohydrodynamic code in Kerr geometry. Here we report on the first numerical simulation of jet formation in a rapidly-rotating (a = 0.95) Kerr black hole magnetosphere. We study cases in which the Keplerian accretion disk is both co-rotating a...
متن کاملApplication of the Cubed-sphere Grid to Tilted Black-hole Accretion Disks
In recent work we presented the first results of global general relativistic magnetohydrodynamic (GRMHD) simulations of tilted (or misaligned) accretion disks around rotating black holes. The simulated tilted disks showed dramatic differences from comparable untilted disks, such as asymmetrical accretion onto the hole through opposing “plunging streams” and global precession of the disk powered...
متن کاملGeneral Relativistic Magnetohydrodynamic Simulations of Black Hole Accretion Disks: Results and Observational Implications
A selection of results from the general relativistic MHD accretion simulations described in the previous talk are presented. We find that the magnetic field strength increases sharply with decreasing radius and is also enhanced near rapidly-spinning black holes. The greater magnetic field strength associated with rapid black hole rotation leads to a large outward electromagnetic angular momentu...
متن کاملGeneral Relativistic Magnetohydrodynamic Simulations of Jet Formation with a Thin Keplerian Disk
We have performed several simulations of black hole systems (non-rotating, black hole spin parameter a = 0.0 and rapidly rotating, a = 0.95) with a geometrically thin Keplerian disk using the newly developed RAISHIN code. The simulation results show the formation of jets driven by the Lorentz force and the gas pressure gradient. The jets have mildly relativistic speed (& 0.4 c). The matter is c...
متن کامل