An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth.
نویسندگان
چکیده
Plant cell morphogenesis depends critically on two processes: the deposition of new wall material at the cell surface and the mechanical deformation of this material by the stresses resulting from the cell's turgor pressure. We developed a model of plant cell morphogenesis that is a first attempt at integrating these two processes. The model is based on the theories of thin shells and anisotropic viscoplasticity. It includes three sets of equations that give the connection between wall stresses, wall strains and cell geometry. We present an algorithm to solve these equations numerically. Application of this simulation approach to the morphogenesis of tip-growing cells illustrates how the viscoplastic properties of the cell wall affect the shape of the cell at steady state. The same simulation approach was also used to reproduce morphogenetic transients such as the initiation of tip growth and other non-steady changes in cell shape. Finally, we show that the mechanical anisotropy built into the model is required to account for observed patterns of wall expansion in plant cells.
منابع مشابه
The Rrop GTPase switch turns on polar growth in pollen.
Pollen-tube growth not only represents an essential stage of plant reproduction but also provides an attractive model for studying cell polarity and morphogenesis. For many years, pollen-tube growth has been known to require a tip-focused Ca2+ gradient and dynamic F actin, but the way that these are controlled remained a mystery until recently. Rop appears to be activated at growth sites by a t...
متن کاملMechanical Forces of Fission Yeast Growth
Mechanical properties contribute to the control of cell size, morphogenesis, development, and lifestyle of fungal cells. Tip growth can be understood by a viscoplastic model, in which growth is derived by high internal turgor pressure and cell-wall elasticity. To understand how these properties regulate growth in the rod-shaped fission yeast Schizosaccaromyces pombe, we devised femtoliter cylin...
متن کاملAn Enhanced Viscoplastic Constitutive Model for Semi-Solid Materials to Analyze Shear Localization
Semi-solid materials undergo strain localization and shear band formation as a result of granular nature of semi-solid deformation. In the present study, to analyze the shear localization, a unified viscoplastic constitutive model was developed for the homogeneous flow. Then, a linearized analysis of the stability performed by examining the necessary condition for the perturbation growth. For t...
متن کاملCrack Tip Constraint for Anisotropic Sheet Metal Plate Subjected to Mode-I Fracture
On the ground of manufacturing, sheet metal parts play a key role as they cover about half of the production processes. Sheet metals are commonly obtained from rolling and forming processes which causes misalignment of micro structure resulting obvious anisotropic characteristics and micro cracks. Presence of micro cracks poses serious attention, when stresses at the tip reach to the critical v...
متن کاملLocalized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana.
Morphogenesis in plants is characterized by highly regulated cell enlargement. However, the mechanisms controlling and localizing regions of growth remain essentially unknown. Root hair formation involves the induction of a localized cell expansion in the lateral wall of a root epidermal cell. This expanded region then enters a second phase of localized growth called tip growth. Root hair forma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The International journal of developmental biology
دوره 50 2-3 شماره
صفحات -
تاریخ انتشار 2006