How well do saliency-based features perform for shape retrieval?
نویسندگان
چکیده
Sparse features have been successfully used in shape retrieval, by encoding feature descriptors into global shape signatures. We investigate how sparse features based on saliency models affect retrieval and provide recommendations on good saliency models for shape retrieval. Our results show that randomly selecting points on the surface produces better retrieval performance than using any of the evaluated salient keypoint detection, including ground-truth. We discuss the reasons for and implications of this unexpected result.
منابع مشابه
Compressed-Sampling-Based Image Saliency Detection in the Wavelet Domain
When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...
متن کاملBased Image Retrieval using Color Boosted Salient Points and Shape features of an image
Salient points are locations in an image where there is a significant variation with respect to a chosen image feature. Since the set of salient points in an image capture important local characteristics of that image, they can form the basis of a good image representation for content-based image retrieval (CBIR). Salient features are generally determined from the local differential structure o...
متن کاملFor a given shape defined by a closed curve C
Shape is one of the primary low level image features in Content Based Image Retrieval (CBIR). Many shape representations and retrieval methods exist. However, most of those methods either do not well capture shape features or are difficult to do normalization (making matching difficult). Among them, methods based Fourier descriptors (FDs) achieve both good representation (perceptually meaningfu...
متن کاملImage Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix
In this article, a fabulous method for database retrieval is proposed. The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...
متن کاملSaliency Detection by Selective Strategy for Salient Object Segmentation
Saliency detection is useful for many computer vision tasks including content-based image retrieval, segmentation, and object detection. However, methods on saliency detection are usually greatly affected by factors like features and segmentation results. We propose a novel selective segmentation-based saliency detection model to decrease the side effects caused by these factors. After extracti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Graphics
دوره 59 شماره
صفحات -
تاریخ انتشار 2016