Primary structure of a glycosylated DNA-binding domain in human plasma fibronectin.
نویسندگان
چکیده
The complete amino acid sequence of a DNA-binding domain isolated from human plasma fibronectin after limited trypsin digestion has been obtained. It contains 132 amino acids and one biantennary glycosyl unit at residue 104, for an estimated Mr of 16,931. The fragment can be purified by a two-step procedure consisting of DNA-affinity chromatography and reverse-phase high performance liquid chromatography. It can also be purified by heparin-affinity chromatography. The domain is unusual in its susceptibility to tryptic-like cleavages even by neutral or aromatic residue-specific proteases. It has no cysteine residues and is predicted to favor a beta-sheet structure by Chou and Fasman analysis. Based on this analysis we have proposed a model which exhibits a clustering of aromatic and basic residues, consistent with similar involvement of basic and aromatic residues in other DNA-binding proteins. The net charge of the domain at neutral pH (+1, without sialic acid) argues against a nonspecific charge interaction with polyanionic macromolecules such as DNA and heparin. Internal sequence repeats occur at intervals of 30, 60, and 90 residues, thus suggesting a maximum size for a repetitive building block which gave rise to this domain.
منابع مشابه
Primary structure of a DNA- and heparin-binding domain (Domain III) in human plasma fibronectin.
The complete amino acid sequence of a DNA- and heparin-binding domain isolated by limited thermolysin digestion of human plasma fibronectin has been obtained. The domain contains 90 amino acids with a calculated molecular weight of 10,225. The apparent molecular mass of this domain is 14 kDa when analyzed by sodium dodecyl sulfate-gel electrophoresis. The anomalously high molecular size estimat...
متن کاملConstruction of a New Fusion Protein Vector Associated to Fibronectin Binding Protein A and Clumping Factor A Derived from Staphylococcus aureus NCTC8325
Objective(s) Staphylococcus aureus is a leading cause of many nosocomial and community acquired infections. According to many reports, antibiotic therapy can not guarantee the eradication of S. aureus infections. Thus designing an adhesin based vaccine could restrain the S. aureus infections. This study designed for construction of a new fusion protein vaccine against S. aureus infections base...
متن کاملRecombinant Expression of the Non-glycosylated Extracellular Domain of Human Transforming Growth Factorβ Type II Receptor Using the Baculovirus Expression System in Sf21 Insect Cells
Transforming growth factor beta (TGFβ1, β2, and β3) are 25 kDa disulfide-linked homodimers that regulate many aspects of cellular functions, consist of proliferation, differentiation, adhesion and extracellular matrix formation. TGFβs mediate their biological activities by binding of growth factor ligand to two related, functionally distinct, single-pass transmembrane receptor kinases, known as...
متن کاملSolution structure of the glycosylated second type 2 module of fibronectin.
Fibronectin is an extracellular matrix glycoprotein that plays a role in a number of physiological processes involving cell adhesion and migration. The modules of the fibronectin monomer are organized into proteolytically resistant domains that in isolation retain their affinity for various ligands. The tertiary structure of the glycosylated second type 2 module (2F2) from the gelatin-binding d...
متن کاملاهمیت فیبرونکتین در تکوین، ترمیم و درمان: مقاله مروری
Fibronectin (FN) is one of the essential component of the extra cellular matrix and their important role is as regulator of cellular activities and also fibronectin is an important scaffold for maintaining tissue. Fibronectin conformational changes expose additional binding sites that participate in fibril formation and in conversion of fibrils into a stabilized, insoluble form. In fact fibrone...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 260 4 شماره
صفحات -
تاریخ انتشار 1985