Combining Electric and Sail Propulsion for Interplanetary Sample Return*
نویسنده
چکیده
Fast sample return from the outer Solar System would open an entirely new avenue for space science, but the vast distances make this a daunting task. The achievable transit velocity and the need for extra propellant on the return trip limit the feasibility of returning extraterrestrial samples to Earth. To keep the mission duration short enough to be of interest, sample return from objects farther out in the Solar System requires increasingly higher velocities. High specific impulse, electric propulsion reduces the propellant required for the outbound and return trips, but decelerating the spacecraft at the inner Solar System from high velocity still involves a long, inward spiral trajectory. The use of solar sails to rapidly decelerate incoming sample capsules and eliminate propellant is explored in this paper. The sail is essentially a “solar parachute” used for braking at the end of the interplanetary return flight, permitting a higher transit speed and truncating the deceleration spiral. In this application the sail is relatively small and manageable since only the sample capsule and its sail are decelerated. A comparison is made between using all-electric propulsion versus combining electric propulsive acceleration with sail deceleration for sample return from the distances of Saturn, Uranus, and Pluto. Solar-sail braking dramatically reduces the return flight time by one-third or more compared to using electric rocket deceleration. To elucidate the technology requirements, wide ranges for both the loaded sail density and electric propulsion specific mass are considered in this initial parametric study. Presented at the 28 International Electric Propulsion Conf., 17-21 March 2003, Toulouse, France. * Work supported by Department of Energy contract DE-AC03-76SF00515.
منابع مشابه
Moving an asteroid with electric solar wind sail
The electric solar wind sail (E-Sail) is a new propulsion method for interplanetary travel which was invented in 2006 and is currently under development. The E-Sail uses charged tethers to extract momentum from the solar wind particles to obtain propulsive thrust. According to current estimates, the E-Sail is 2-3 orders of magnitude better than traditional propulsion methods (chemical rockets a...
متن کاملElectric Solar Wind Sail Mass Budget Model
The electric solar wind sail (E-sail) is a new type of propellantless propulsion system for Solar System transportation, which uses the natural solar wind for producing spacecraft propulsion. This paper discusses a mass breakdown and a performance model for 5 an E-sail spacecraft that hosts a scientific payload of prescribed mass. In particular, the model is able to estimate the total spacecraf...
متن کاملSystems Design of a Hybrid Sail Pole - Sitter
This paper presents the preliminary systems design of a pole-sitter. This is a spacecraft that hovers over an Earth pole, creating a platform for full hemispheric observation of the polar regions, as well as direct-link telecommunications. To provide the necessary thrust, a hybrid propulsion system combines a solar sail with a more mature solar electric propulsion (SEP) thruster. Previous work ...
متن کاملAas 12-130 Feedback Stabilization of Displaced Periodic Orbits: Application to Binary Asteroid
This paper investigates displaced periodic orbits at linear order in the circular restricted Earth-Moon system (CRTBP), where the third massless body utilizes a hybrid of solar sail and a solar electric propulsion (SEP). A feedback linearization control scheme is implemented to perform stabilization and trajectory tracking for the nonlinear system. Attention is now directed to binary asteroid s...
متن کاملDisplaced Geostationary Orbit Design Using Hybrid Sail Propulsion
Due to an increase in number of geostationary spacecraft and limits imposed by east-west spacing requirements, the geostationary orbit is becoming congested. To increase its capacity, this paper proposes to create new geostationary slots by displacing the geostationary orbit either out of or in the equatorial plane by means of hybrid solar sail and solar electric propulsion. To minimize propell...
متن کامل