Mouse and Human CD1d-Self-Lipid Complexes Are Recognized Differently by Murine Invariant Natural Killer T Cell Receptors
نویسندگان
چکیده
Invariant natural killer T (iNKT) cells recognize self-lipids presented by CD1d through characteristic TCRs, which mainly consist of the invariant Vα14-Jα18 TCRα chain and Vβ8.2, 7 or 2 TCRβ chains with hypervariable CDR3β sequences in mice. The iNKT cell-CD1d axis is conserved between humans and mice, and human CD1d reactivity of murine iNKT cells have been described. However, the detailed differences between the recognition of human and mouse CD1d bound to various self-lipids by mouse iNKT TCRs are largely unknown. In this study, we generated a de novo murine iNKT TCR repertoire with a wider range of autoreactivity compared with that of naturally occurring peripheral iNKT TCRs. Vβ8.2 mouse iNKT TCRs capable of recognizing the human CD1d-self-lipid tetramer were identified, although such clones were not detectable in the Vβ7 or Vβ2 iNKT TCR repertoire. In line with previously reports, clonotypic Vβ8.2 iNKT TCRs with unique CDR3β loops did not discriminate among lipids presented by mouse CD1d. Unexpectedly, however, these iNKT TCRs showed greater ligand selectivity toward human CD1d presenting the same lipids. Our findings demonstrated that the recognition of mouse and human CD1d-self-lipid complexes by murine iNKT TCRs is not conserved, thereby further elucidating the differences between cognate and cross-species reactivity of self-antigens by mouse iNKT TCRs.
منابع مشابه
Effective functional maturation of invariant natural killer T cells is constrained by negative selection and T-cell antigen receptor affinity.
The self-reactivity of their T-cell antigen receptor (TCR) is thought to contribute to the development of immune regulatory cells, such as invariant NK T cells (iNKT). In the mouse, iNKT cells express TCRs composed of a unique Vα14-Jα18 rearrangement and recognize lipid antigens presented by CD1d molecules. We created mice expressing a transgenic TCR-β chain that confers high affinity for self-...
متن کاملIn Vivo Identification of Glycolipid Antigen–Specific T Cells Using Fluorescent Cd1d Tetramers
The CD1 family of major histocompatibility complex (MHC)-like molecules specializes in presenting lipid and glycolipid antigens to alpha/beta T lymphocytes, but little is known about the size of the CD1-restricted T cell population or the frequency of T lymphocytes specific for a given glycolipid antigen. Here, we report the generation and use of mouse CD1d1-glycolipid tetramers to visualize CD...
متن کاملStructural determination of lipid antigens captured at the CD1d-T-cell receptor interface.
Glycolipid antigens recognized by αβ T-cell receptors (TCRs) drive the activation of invariant natural killer T (iNKT) cells, a specialized subset of innate T lymphocytes. Glycolipids with α-linked anomeric carbohydrates have been identified as potent microbial lipid antigens for iNKT cells, and their unusual α-anomeric linkage has been thought to define a "foreign" lipid antigen motif. However...
متن کاملInvariant Natural Killer T Cells
Invariant Natural killer T cell (iNKT cells) are a subset of T cells, which are narrowly defined as a T cell lineage expressing a semi-invariant CD1d-restricted T cell Receptors (TCRs) composed by Vα24-Jα18/Vβ11 in human, and Vα14-Jα18/Vβ8,Vβ7, and Vβ2 in mouse. Unlike conventional T cells which recognize peptides bound to highly polymorphic major histocompatibility complex (MHC) class I and II...
متن کاملRole for lysosomal phospholipase A2 in iNKT cell-mediated CD1d recognition.
Invariant natural killer T (iNKT) cells recognize self lipid antigens presented by CD1d molecules. The nature of the self-antigens involved in the development and maturation of iNKT cells is poorly defined. Lysophospholipids are self-antigens presented by CD1d that are generated through the action of phospholipases A1 and A2. Lysosomal phospholipase A2 (LPLA2, group XV phospholipase A2) resides...
متن کامل