Edge effect on thermal transport in graphene nanoribbons: A phonon localization mechanism beyond edge roughness scattering
نویسندگان
چکیده
Equilibrium molecular dynamics simulations show that graphene nanoribbons (GNRs) with zigzag edges have higher thermal conductivity (j) than armchair-edged ones, and the difference diminishes with increasing temperature or ribbon width. The dominant phonon wavelength for thermal transport can be much longer (by orders of magnitude) than the difference between the “roughness” of smooth zigzag and armchair edges. Therefore, the roughness scattering theory is not sufficient to explain the largely different j of GNRs with different edge chiralities. Crosssectional decomposition of the steady-state heat flux shows significant suppression of thermal transport at edges, especially in armchair ones. This behavior is explored by phonon spectra analysis. Considerable phonon localization at edges is concluded to underlie the edge-chirality dependent j of GNRs. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4732155]
منابع مشابه
Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering
The transport properties of carriers in semiconducting graphene nanoribbons are studied by comparing the effects of phonon, impurity, and line-edge roughness scattering. It is found that scattering from impurities located at the surface of nanoribbons and from acoustic phonons are as important as line-edge roughness scattering. The relative importance of these scattering mechanisms varies with ...
متن کاملEnhanced Thermoelectric Figure of Merit in Edge Disordered Zigzag Graphene Nanoribbons
We investigate electron and phonon transport through edge disordered zigzag graphene nanoribbons based on the same methodological tool of nonequilibrium Green functions. We show that edge disorder dramatically reduces phonon thermal transport while being only weakly detrimental to electronic conduction. The behavior of the electronic and phononic elastic mean free paths points to the possibilit...
متن کاملSignificantly reduced thermal conductivity and enhanced thermoelectric properties of single- and bi-layer graphene nanomeshes with sub-10nm neck-width
When graphene is shrunk into ~10 nm scale graphene nanoribbons or nanomesh structures, it is expected that not only electrical properties but also thermal conductivity and thermoelectric property are significantly altered due to the quantum confinement effect and extrinsic phonon-edge scattering. Here, we fabricate large-area, sub10 nm singleand bilayer graphene nanomeshes from block copolymer ...
متن کاملSpin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes
We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...
متن کاملPhonon Transport in Large Scale Carbon-Based Disordered Materials: Implementation of an Efficient Order-N and Real Space Kubo Methodology
We have developed an efficient order-N real space Kubo approach for the calculation of the phonon conductivity which outperforms state-of-the-art alternative implementations based on the Green’s function formalism. The method treats efficiently the time-dependent propagation of phonon wave packets in real space, and this dynamics is related to the calculation of the thermal conductance. Without...
متن کامل