Real-time single molecular study of a pretreated cellulose hydrolysis mode and individual enzyme movement
نویسندگان
چکیده
BACKGROUND The main challenges of large-scale biochemical conversion involve the high costs of cellulolytic enzymes and the inefficiency in enzymatic deconstruction of polysaccharides embedded in the complex structure of the plant cell wall, leading to ongoing interests in studying the predominant mode of enzymatic hydrolysis. In this study, complete enzymatic hydrolysis of pretreated biomass substrates was visualized in situ and in real time by atomic force microscopy (AFM) topography and recognition imaging. Throughout the entire hydrolytic process, a hydrolysis mode for exoglucanase (CBH I) consisting of a peeling action, wherein cellulose microfibrils are peeled from sites on the pretreated cellulose substrate that have cracks sufficiently large for CBH I to immobilize. RESULTS We quantitatively monitored the complete hydrolytic process on pretreated cellulose. The synergetic effect among the different enzymes can accelerate the cellulose hydrolysis rate dramatically. However, the combination of CBH I and β-glucosidases (β-G) exhibited a similar degradation capacity as did whole enzyme (contains the cellobiohydrolases and endoglucanase as its major enzyme components). We developed a comprehensive dynamic analysis for individual cellulase acting on single pretreated cellulose through use of functional AFM topography and recognition imaging. The single crystalline cellulose was divided into different regions based on the cracks on the substrate surface and was observed to either depolymerize or to peel away by the jammed enzyme molecules. After the exfoliation of one region, new cracks were produced for the enzyme molecules to immobilize. The fiber width may have a relationship with the peeling mode of the fibers. We performed a statistical height measure of the generated peaks of the peeled fibers. The height values range from 11 to 24 nm. We assume that the CBH I enzymes stop progressing along the cellulose microfibril when the peeled microfibril height exceeds 11 nm. CONCLUSION The combination of CBH I and β-G can achieve an effective hydrolysis of the pretreated biomass substrates. The single-molecule study of the complete hydrolytic process indicates that the hydrolytic mode involves the peeling of the microfibrils and progressive depolymerization, which depend on the size of the cracks on the surface of the pretreated cellulose microfibrils.
منابع مشابه
Bioaffinity Based Immobilization of Almond (Amygdalus communis) b-galactosidase on Con A-layered Calcium Alginate-cellulose Beads: Its Application in Lactose Hydrolysis in Batch and Continuous Mode
In this study, immobilization of partially purified almond (Amygdalus communis) β-galactosidase on Con A layered calcium alginate-cellulose beads was investigated. Immobilized β-galactosidase retained 72% of theinitial activity after crosslinking by glutaraldehyde. Both soluble and immobilized enzyme exhibited the samepH and temperature optima at pH 5.5 and 50ºC, respectively. Howev...
متن کاملAcid Hydrolysis of Pretreated Palm Oil Lignocellulosic Wastes
Palm oil solid wastes consist of cellulose, hemicellulose and lignin. In this study, a single stage of acid hydrolysis process of palm oil empty fruit bunch (EFB) for production of fermentable sugar was carried out under moderate temperature (45°C) and ambient pressure. The effect of four different process variables such as solid size, HCl concentration, solid percentage and temperature were in...
متن کاملEnhancing Enzymatic Hydrolysis of Cellulose by Ultrasonic Pretreatment
Slurries of rice-straw cellulose (obtained by delignification and removal of hemicelluloses from the powdered raw material) were subjected to ultrasonic waves at different intensities for various times (constant temperature). Susceptibility of the samples to cellulose-hydrolysis increased initially with pretreatment time, reaching a maximum or a constant level thereafter. Maximum glucose yi...
متن کاملKinetic Modeling of Enzymatic Hydrolysis of Pretreated Sorghum Bicolor and Rice Husk
In this study, the hydrolysis of pretreated sorghum stem and rice husk was investigated at various initial enzyme concentrations and substrate loadings. The slowdown in enzymatic hydrolysis of lignocellulosic materials with conversion has often been attributed to decreasing the activity of enzyme. A kinetic model was developed and expressed mathematically based on enzyme deactivation for enzyma...
متن کاملDerivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis
UNLABELLED BACKGROUND The analysis of cellulose molecular weight distributions by gel permeation chromatography (GPC) is a powerful tool to obtain detailed information on enzymatic cellulose hydrolysis, supporting the development of economically viable biorefinery processes. Unfortunately, due to work and time consuming sample preparation, the measurement of cellulose molecular weight distri...
متن کامل