Improving City Model Determination by Using Road Detection from Lidar Data

نویسنده

  • S. P. Clode
چکیده

A new road classification technique from LIght Detection And Ranging (LIDAR) data is presented that relies on region growing in order to classify areas as road. The new method corrects some of the problems encountered with previously documented LIDAR road detectors. A major benefit of the new road detection method is that it can be combined with standard building detection techniques to detect bridges within the road network. As a consequence bridges are identified as false positive detections in the candidate building regions and can be removed, thus improving the obtained building mask whilst more detail is added to the final classification scheme seen in the road network. Vectorisation of the detected road network is performed using a Phase Coded Disk (PCD) thus completing the detection and vectorisation processes. The benefits of using LIDAR data in road extraction is emphasised by the simple but automated creation of longitudinal profiles and cross sections from the vectorised road network. * Corresponding author.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance of Quickbird Image and Lidar Data Fusion for 2d/3d City Mapping

In this paper we present a practical and convenient 2D city mapping and 3D digital surface model construction technique based on data merge of spatial, spectral, and textural information of QuickBird High Resolution Satellite Imagery with precise Digital Surface Model (DSM) information of LiDAR data for an urban area within the city of Cairo. Due to recent increased demand for city mapping from...

متن کامل

Automatic Road Extraction from Dense Urban Area by Integrated Processing of High Resolution Imagery and Lidar Data

Automated and reliable 3D city model acquisition is an increasing demand. Automatic road extraction from dense urban areas is a challenging issue due to the high complex image scene. From imagery, the obstacles of the extraction stem mainly from the difficulty of finding clues of the roads and complexity of the contextual environments. One of the promising methods to deal with this is to use da...

متن کامل

Modeling Road Centerlines and Predicting Lengths in 3-D Using LIDAR Point Cloud and Planimetric Road Centerline Data

INTRODUCTION 3-D Spatial Modeling LIght Detection And Ranging (LIDAR) METHODOLOGY 3-D Point Model Model Construction Interpolation Snapping Comparison of Interpolation and Snapping 3-D Distance Determination CASE STUDY Study Scope Data Sources Road Centerline Data LIDAR Point Data DMI Data Algorithms Quality Control (Assessing Point Clouds and Correctly Allocating Points) Special Cases Accuracy...

متن کامل

Hierarchical Registration Method for Airborne and Vehicle LiDAR Point Cloud

A new hierarchical method for the automatic registration of airborne and vehicle light detection and ranging (LiDAR) data is proposed, using three-dimensional (3D) road networks and 3D building contours. Firstly, 3D road networks are extracted from airborne LiDAR data and then registered with vehicle trajectory lines. During the registration of airborne road networks and vehicle trajectory line...

متن کامل

Automatic Compilation of 3d Road Features Using Lidar and Multi-spectral Source Data

While many commercial cartographic feature extraction systems process panchromatic and color imagery, few systems fully integrate airborne LIDAR data as a component of the feature extraction process. Most computational techniques seek elevation discontinuities at object boundaries or use the physics of the LIDAR signal to detect regions indicative of sharp edges and/or foliage. Automated road e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005