Dietary Cocoa Powder Improves Hyperlipidemia and Reduces Atherosclerosis in apoE Deficient Mice through the Inhibition of Hepatic Endoplasmic Reticulum Stress
نویسندگان
چکیده
Cocoa powder is rich in flavonoids, which have many beneficial effects on human health, including antioxidative and anti-inflammatory effects. The aim of our study was to investigate whether the intake of cocoa powder has any influence on hyperlipidemia and atherosclerosis and examine the underlying molecular mechanisms. We fed apoE knockout mice a Western diet supplemented with either 0.2% (low group) or 2% (high group) cocoa powder for 12 weeks. The groups fed dietary cocoa powder showed a significant reduction in both plasma cholesterol levels and aortic atherosclerosis compared to the control group. Analysis of mRNA profiling of aortic atherosclerotic lesions revealed that the expression of several genes related to apoptosis, lipid metabolism, and inflammation was significantly reduced, while the antiapoptotic gene Bcl2 was significantly increased in the cocoa powder group compared to the control. RT-PCR analysis along with Western blotting revealed that a diet containing cocoa powder inhibited the expression of hepatic endoplasmic reticulum stress. These data suggest that cocoa powder intake improves hyperlipidemia and atherosclerosis, and such beneficial effects are possibly mediated through the suppression of hepatic endoplasmic reticulum stress.
منابع مشابه
Allantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions
Objective(s): Non-alcoholic steatohepatitis (NASH) is defined by steatosis and inflammation in the hepatocytes, which can progress to cirrhosis and possibly hepatocellular carcinoma. However, current treatments are not entirely effective. Allantoin is one of the principal compounds in many plants and an imidazoline I receptor agonist as well. Allantoin has positive eff...
متن کاملInhibition of Endoplasmic Reticulum Stress and Atherosclerosis by 2-Aminopurine in Apolipoprotein E-Deficient Mice
We previously reported that the apolipoprotein (apo) B48-carrying lipoproteins obtained from apoE knockout (apoE (-/-) ) mice, so called E(-)/B48 lipoproteins, transformed mouse macrophages into foam cells and enhanced the phosphorylation of eukaryotic translation initiation factor 2 α (eIF-2 α ). Furthermore, the eIF-2 α phosphorylation inhibitor, 2-aminopurine (2-AP), attenuated E(-)/B48 lipo...
متن کاملA Deficiency of Herp, an Endoplasmic Reticulum Stress Protein, Suppresses Atherosclerosis in ApoE Knockout Mice by Attenuating Inflammatory Responses
Herp was originally identified as an endoplasmic reticulum (ER) stress protein in vascular endothelial cells. ER stress is induced in atherosclerotic lesions, but it is not known whether Herp plays any role in the development of atherosclerosis. To address this question, we generated Herp- and apolipoprotein E (apoE)-deficient mice (Herp(-/-); apoE(-/-) mice) by crossbreeding Herp(-/-) mice and...
متن کاملEndoplasmic reticulum stress and glycogen synthase kinase-3β activation in apolipoprotein E-deficient mouse models of accelerated atherosclerosis.
OBJECTIVE The goal of this study was to examine the role of endoplasmic reticulum (ER) stress signaling and the contribution of glycogen synthase kinase (GSK)-3β activation in hyperglycemic, hyperhomocysteinemic, and high-fat-fed apolipoprotein E-deficient (apoE(-/-)) mouse models of accelerated atherosclerosis. METHODS AND RESULTS Female apoE(-/-) mice received multiple low-dose injections o...
متن کاملEndoplasmic reticulum oxidoreductin 1α mediates hepatic endoplasmic reticulum stress in homocysteine-induced atherosclerosis.
Endoplasmic reticulum (ER) stress is emerging as an important modulator of different pathological process and as a mechanism contributing to homocysteine (Hcy)-induced hepar injury. However, the molecular event that Hcy-induced ER stress in the hepar under the atherosclerosis background is currently unknown. Endoplasmic reticulum oxidoreductin 1α (ERO1α) plays a crucial role in maintaining ER s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016