Caffeine inhibits gene conversion by displacing Rad51 from ssDNA
نویسندگان
چکیده
Efficient repair of chromosomal double-strand breaks (DSBs) by homologous recombination relies on the formation of a Rad51 recombinase filament that forms on single-stranded DNA (ssDNA) created at DSB ends. This filament facilitates the search for a homologous donor sequence and promotes strand invasion. Recently caffeine treatment has been shown to prevent gene targeting in mammalian cells by increasing non-productive Rad51 interactions between the DSB and random regions of the genome. Here we show that caffeine treatment prevents gene conversion in yeast, independently of its inhibition of the Mec1(ATR)/Tel1(ATM)-dependent DNA damage response or caffeine's inhibition of 5' to 3' resection of DSB ends. Caffeine treatment results in a dosage-dependent eviction of Rad51 from ssDNA. Gene conversion is impaired even at low concentrations of caffeine, where there is no discernible dismantling of the Rad51 filament. Loss of the Rad51 filament integrity is independent of Srs2's Rad51 filament dismantling activity or Rad51's ATPase activity and does not depend on non-specific Rad51 binding to undamaged double-stranded DNA. Caffeine treatment had similar effects on irradiated HeLa cells, promoting loss of previously assembled Rad51 foci. We conclude that caffeine treatment can disrupt gene conversion by disrupting Rad51 filaments.
منابع مشابه
A single-stranded DNA-binding protein is needed for efficient presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein.
Protein-promoted DNA strand exchange requires formation of an active presynaptic complex between the DNA-pairing protein and single-stranded DNA (ssDNA). Formation of such a contiguous filament is stimulated by a ssDNA-binding protein. Here, the effects of replication protein A (RPA) on presynaptic complex formation and DNA strand exchange activities of Rad51 protein were examined. Presynaptic ...
متن کاملTRF1 and TRF2 Differentially Modulate Rad51-Mediated Telomeric and Nontelomeric Displacement Loop Formation in Vitro
A growing body of literature suggests that the homologous recombination/repair (HR) pathway cooperates with components of the shelterin complex to promote both telomere maintenance and nontelomeric HR. This may be due to the ability of both HR and shelterin proteins to promote strand invasion, wherein a single-stranded DNA (ssDNA) substrate base pairs with a homologous double-stranded DNA (dsDN...
متن کاملThe process of displacing the single-stranded DNA-binding protein from single-stranded DNA by RecO and RecR proteins
The regions of single-stranded (ss) DNA that result from DNA damage are immediately coated by the ssDNA-binding protein (SSB). RecF pathway proteins facilitate the displacement of SSB from ssDNA, allowing the RecA protein to form protein filaments on the ssDNA region, which facilitates the process of recombinational DNA repair. In this study, we examined the mechanism of SSB displacement from s...
متن کاملBRCA1 regulates RAD51 function in response to DNA damage and suppresses spontaneous sister chromatid replication slippage: implications for sister chromatid cohesion, genome stability, and carcinogenesis.
The breast/ovarian cancer susceptibility proteins BRCA1 and BRCA2 maintain genome stability, at least in part, through a functional role in DNA damage repair. They both colocalize with RAD51 at sites of DNA damage/replication and activate RAD51-mediated homologous recombination repair of DNA double-strand breaks (DSB). Whereas BRCA2 interacts directly with and regulates RAD51, the role of BRCA1...
متن کاملCohesion, Genome Stability, and Carcinogenesis Replication Slippage: Implications for Sister Chromatid Damage and Suppresses Spontaneous Sister Chromatid BRCA1 Regulates RAD51 Function in Response to DNA
The breast/ovarian cancer susceptibility proteins BRCA1 and BRCA2 maintain genome stability, at least in part, through a functional role in DNA damage repair. They both colocalize with RAD51 at sites of DNA damage/replication and activate RAD51-mediated homologous recombination repair of DNA double-strand breaks (DSB). Whereas BRCA2 interacts directly with and regulates RAD51, the role of BRCA1...
متن کامل