Influence of cell fate mechanisms upon retinal mosaic formation: a modelling study.

نویسندگان

  • Stephen J Eglen
  • David J Willshaw
چکیده

Many types of retinal neurone are arranged in a spatially regular manner so that the visual scene is uniformly sampled. Several mechanisms are thought to be involved in the development of regular cellular positioning. One early-acting mechanism is the lateral inhibition of neighbouring cells from acquiring the same fate, mediated by Delta-Notch signalling. We have used computer modelling to test whether lateral inhibition might transform an initial population of undifferentiated cells into more regular populations of two types of differentiated cells. Initial undifferentiated cells were positioned randomly, subject only to a minimal distance constraint. Each undifferentiated cell then acquired either primary or secondary fate using one of several lateral inhibition mechanisms. Mosaic regularity was assessed using the regularity index and the packing factor. We found that for irregular undifferentiated mosaics, the arrangement of resulting primary (but not secondary) fate cells was more regular than in the initial undifferentiated population. However, for regular undifferentiated mosaics, no further increases in the regularity of the primary fate mosaics were observed. We have used this model to test the specific hypothesis that on- and off-centre retinal ganglion cells emerge from an initial, irregular undifferentiated population of ganglion cells. Lateral inhibition can subdivide an initially irregular population into two types of cell that are mildly regular. However, lateral inhibition alone is insufficient to produce mosaics of the same regularity as observed experimentally. Likewise, and in contrast to earlier reports, cell death alone is insufficient to match the regularity of experimental mosaics. We conclude that lateral inhibition can transform irregular distributions into regular mosaics, upon which subsequent processes (such as lateral cell movement or cell death) can further refine mosaic regularity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of regular cellular spacing in the retina: theoretical models.

During development of the nervous system, neurons should be appropriately positioned to enable them to make the right functional contacts. Neurons do not immediately migrate to their correct location, but instead regular arrangements gradually emerge from randomly arranged cell populations. This phenomenon has been studied often in the retina, due to its relatively simple layered organisation. ...

متن کامل

Mesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells

Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...

متن کامل

Building a retinal mosaic: cell-fate decision in the fly eye.

Across the animal kingdom, color discrimination is achieved by comparing the outputs of photoreceptor cells (PRs) that have different spectral sensitivities. Much remains to be understood about how the pattern of these different PRs is generated and maintained. The Drosophila eye has long provided a beautiful system for understanding various aspects of retinal-cell differentiation. Recent progr...

متن کامل

A moving wave patterns the cone photoreceptor mosaic array in the zebrafish retina.

In this paper, we describe the embryonic origin and patterning of the planar mosaic array of cone photoreceptor spectral subtypes in the zebrafish retina. A discussion of possible molecular mechanisms that might generate the cone mosaic array considers but discards a model that accounts for formation of neuronal mosaics in the inner retina and discusses limitations of mathematical simulations t...

متن کامل

Cell fate determination in the vertebrate retina.

The vertebrate retina is a well-characterized and tractable model for studying neurogenesis. Retinal neurons and glia are generated in a conserved sequence from a pool of multipotent progenitor cells, and numerous cell fate determinants for the different classes of retinal cell types have been identified. Here, we summarize several recent developments in the field that have advanced understandi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 129 23  شماره 

صفحات  -

تاریخ انتشار 2002