Bias due to participant overlap in two‐sample Mendelian randomization
نویسندگان
چکیده
Mendelian randomization analyses are often performed using summarized data. The causal estimate from a one-sample analysis (in which data are taken from a single data source) with weak instrumental variables is biased in the direction of the observational association between the risk factor and outcome, whereas the estimate from a two-sample analysis (in which data on the risk factor and outcome are taken from non-overlapping datasets) is less biased and any bias is in the direction of the null. When using genetic consortia that have partially overlapping sets of participants, the direction and extent of bias are uncertain. In this paper, we perform simulation studies to investigate the magnitude of bias and Type 1 error rate inflation arising from sample overlap. We consider both a continuous outcome and a case-control setting with a binary outcome. For a continuous outcome, bias due to sample overlap is a linear function of the proportion of overlap between the samples. So, in the case of a null causal effect, if the relative bias of the one-sample instrumental variable estimate is 10% (corresponding to an F parameter of 10), then the relative bias with 50% sample overlap is 5%, and with 30% sample overlap is 3%. In a case-control setting, if risk factor measurements are only included for the control participants, unbiased estimates are obtained even in a one-sample setting. However, if risk factor data on both control and case participants are used, then bias is similar with a binary outcome as with a continuous outcome. Consortia releasing publicly available data on the associations of genetic variants with continuous risk factors should provide estimates that exclude case participants from case-control samples.
منابع مشابه
Misconceptions on the use of MR-Egger regression and the evaluation of the InSIDE assumption
1. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003;32:1–22. 2. Burgess S, Timpson NJ, Ebrahim S, Davey Smith G. Mendelian randomization: where are we now and where are we going? Int J Epidemiol 2015;44:379–88. 3. Glymour MM, Tchetgen EJT, Robins JM. Credible Mendelian randomizat...
متن کاملEmerging Themes in Epidemiology Analytic perspective Can we apply the Mendelian randomization methodology without considering epigenetic effects?
Introduction: Instrumental variable (IV) methods have been used in econometrics for several decades now, but have only recently been introduced into the epidemiologic research frameworks. Similarly, Mendelian randomization studies, which use the IV methodology for analysis and inference in epidemiology, were introduced into the epidemiologist's toolbox only in the last decade. Analysis: Mendeli...
متن کاملMendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
BACKGROUND The number of Mendelian randomization analyses including large numbers of genetic variants is rapidly increasing. This is due to the proliferation of genome-wide association studies, and the desire to obtain more precise estimates of causal effects. However, some genetic variants may not be valid instrumental variables, in particular due to them having more than one proximal phenotyp...
متن کاملCan we apply the Mendelian randomization methodology without considering epigenetic effects?
INTRODUCTION Instrumental variable (IV) methods have been used in econometrics for several decades now, but have only recently been introduced into the epidemiologic research frameworks. Similarly, Mendelian randomization studies, which use the IV methodology for analysis and inference in epidemiology, were introduced into the epidemiologist's toolbox only in the last decade. ANALYSIS Mendeli...
متن کاملSeverity of bias of a simple estimator of the causal odds ratio in Mendelian randomization studies.
Mendelian randomization studies estimate causal effects using genetic variants as instruments. Instrumental variable methods are straightforward for linear models, but epidemiologists often use odds ratios to quantify effects. Also, odds ratios are often the quantities reported in meta-analyses. Many applications of Mendelian randomization dichotomize genotype and estimate the population causal...
متن کامل