Asymptotic N P Property of Rational Surfaces

نویسندگان

  • H A Huy
  • T Ai
چکیده

The pioneering work of Mumford ([M]), its amplifications by St. Donat ([SD]) and Fujita ([F]), the inspiring work of Green ([Gr]), followed by works of Green and Lasarsfeld ([G-L]) and Ein and Lasarsfeld ([E-L]), have captured the interest and have influenced a large number of researchers in the last fifteen years. Several authors have studied the defining equations of projective varieties and, more generally, the higher order syzygies among these equations. A significant algebraic property was introduced along this line of works ([Gr], [G-L]), the N p property. It says that a variety is generated by quadratics, and its minimal free resolution is linear up to the first p steps. We recall in detail the definition of N p property from [G-L].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Asymptotic Density of Finite-order Elements in Virtually Nilpotent Groups

Let Γ be a finitely generated group with a given word metric. The asymptotic density of elements in Γ that have a particular property P is the limit, as r → ∞, of the proportion of elements in the ball of radius r which have the property P . We obtain a formula to compute the asymptotic density of finite-order elements in any virtually nilpotent group. Further, we show that the spectrum of numb...

متن کامل

Curves and surfaces with rational chord length parameterization

The investigation of rational varieties with chord length parameterization (shortly RCL varieties) was started by Farin (2006) who observed that rational quadratic circles in standard Bézier form are parametrized by chord length. Motivated by this observation, general RCL curves were studied. Later, the RCL property was extended to rational triangular Bézier surfaces of an arbitrary degree for ...

متن کامل

Kawamata-Viehweg Vanishing on Rational Surfaces in Positive Characteristic

We prove that the Kawamata-Viehweg vanishing theorem holds on rational surfaces in positive characteristic by means of the lifting property to W2(k) of certain log pairs on smooth rational surfaces. As a corollary, the Kawamata-Viehweg vanishing theorem holds on log del Pezzo surfaces in positive characteristic.

متن کامل

Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications

Let  $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if  $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring  $R=K[x_1,ld...

متن کامل

Surfaces with Rational Chord Length Parameterization

We consider a rational triangular Bézier surface of degree n and study conditions under which it is rationally parameterized by chord lengths (RCL surface) with respect to the reference circle. The distinguishing property of these surfaces is that the ratios of the three distances of a point to the three vertices of an arbitrary triangle inscribed to the reference circle and the ratios of the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001