Role of Viscous Dissipative Processes on the Wetting of Textured Surfaces

نویسندگان

  • H. S. Grewal
  • Hong Nam Kim
  • Il-Joo Cho
  • Eui-Sung Yoon
چکیده

We investigate the role of viscous forces on the wetting of hydrophobic, semi-hydrophobic, and hydrophilic textured surfaces as second-order effects. We show that during the initial contact, the transition from inertia- to viscous-dominant regime occurs regardless of their surface topography and chemistry. Furthermore, we demonstrate the effect of viscosity on the apparent contact angle under quasi-static conditions by modulating the ratio of a water/glycerol mixture and show the effect of viscosity, especially on the semi-hydrophobic and hydrophobic textured substrates. The reason why the viscous force does not affect the apparent contact angle of the hydrophilic surface is explained based on the relationship between the disjoining pressure and surface chemistry. We further propose a wetting model that can predict the apparent contact angle of a liquid drop on a textured substrate by incorporating a viscous force component in the force balance equation. This model can predict apparent contact angles on semi-hydrophobic and hydrophobic textured surfaces exhibiting Wenzel state more accurately than the Wenzel model, indicating the importance of viscous forces in determining the apparent contact angle. The modified model can be applied for estimating the wetting properties of arbitrary engineered surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dry Friction and Wear Performance of Micro Surface Textures Generated by Ultrasonic Assisted Face Turning

Nowadays the surface texturing has been widely recognized as a usable capability to improve the tribological systems. In this paper, ultrasonic assisted turning (UAT) isperformed to create the micro textures on the flat faces. Micro surface texturing ismade on the Al7075-T6 by the UAT in the face turning process. Then, the influences of cutting speed feed, vibration direction and vibration ampl...

متن کامل

Dry Friction and Wear Performance of Micro Surface Textures Generated by Ultrasonic Assisted Face Turning

Nowadays the surface texturing has been widely recognized as a usable capability to improve the tribological systems. In this paper, ultrasonic assisted turning (UAT) isperformed to create the micro textures on the flat faces. Micro surface texturing ismade on the Al7075-T6 by the UAT in the face turning process. Then, the influences of cutting speed feed, vibration direction and vibration ampl...

متن کامل

Friction and Wetting Transitions of Magnetic Droplets on Micropillared Superhydrophobic Surfaces.

Reliable characterization of wetting properties is essential for the development and optimization of superhydrophobic surfaces. Here, the dynamics of superhydrophobicity is studied including droplet friction and wetting transitions by using droplet oscillations on micropillared surfaces. Analyzing droplet oscillations by high-speed camera makes it possible to obtain energy dissipation parameter...

متن کامل

Tailoring Hydrodynamics of Non-wetting Droplets with Nano-engineered Surfaces

Considering that contacts between liquid and solid are ubiquitous in almost all energy processes, including steam turbines, oil pumping, condensers and boilers, the efficiency of energy transportation can be maximized such that the liquid-solid interaction is optimized. Texture based super-hydrophobicity, also known as the Lotus effect, has been one of the most extensively studied topics in the...

متن کامل

Wetting of textured surfaces

We discuss quantitatively the wetting of a solid textured by a designed roughness. Both the hydrophilic and the hydrophobic case are described, together with possible implications for the wetting of porous materials. © 2002 Elsevier Science B.V. All rights reserved. PACS numbers: 68.10-m-; 68.35.Ct-; 68.45.Gd

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015