Using search term positions for determining document relevance

نویسنده

  • Patricio Galeas
چکیده

The technological advancements in computer networks and the substantial reduction of their production costs have caused a massive explosion of digitally stored information. In particular, textual information is becoming increasingly available in electronic form. Finding text documents dealing with a certain topic is not a simple task. Users need tools to sift through non-relevant information and retrieve only pieces of information relevant to their needs [14]. The traditional methods of information retrieval (IR) based on search term frequency have somehow reached their limitations, and novel ranking methods based on hyperlink information are not applicable to unlinked documents. The retrieval of documents based on the positions of search terms in a document has the potential of yielding improvements, because other terms in the environment where a search term appears (i.e. the neighborhood) are considered. That is to say, the grammatical type, position and frequency of other words help to clarify and specify the meaning of a given search term [98]. However, the required additional analysis task makes positionbased methods slower than methods based on term frequency and requires more storage to save the positions of terms. These drawbacks directly affect the performance of the most user critical phase of the retrieval process, namely query evaluation time, which explains the scarce use of positional information in contemporary retrieval systems. This thesis explores the possibility of extending traditional information retrieval systems with positional information in an efficient manner that permits us to optimize the retrieval performance by handling term positions at query evaluation time. To achieve this task, several abstract representation of term positions to efficiently store and operate on term positional data are investigated. In the Gauss model, descriptive statistics methods are used to estimate term positional information, because they minimize outliers and irregularities in the data. The Fourier model is based on Fourier series to represent positional information. In the Hilbert model, functional analysis methods are used to provide reliable term position estimations and simple mathematical operators to handle positional data. The proposed models are experimentally evaluated using standard resources of the IR research community (Text Retrieval Conference). All experiments demonstrate that the use of positional information can enhance the quality of search results. The suggested models outperform state-of-the-art retrieval utilities. The term position models open new possibilities to analyze and handle textual data. For instance, document clustering and compression of positional data based on these models could be interesting topics to be considered in future research.

منابع مشابه

Document Relevance Evaluation via Term Distribution Analysis Using Fourier Series Expansion

In addition to the frequency of terms in a document collection, the distribution of terms plays an important role in determining the relevance of documents for a given search query. In this paper, term distribution analysis using Fourier series expansion as a novel approach for calculating an abstract representation of term positions in a document corpus is introduced. Based on this approach, t...

متن کامل

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

Word Distribution Analysis for Relevance Ranking and Query Expansion

Apart from the frequency of terms in a document collection, the distribution of words plays an important role in determining the relevance of documents for a given search query. In this paper, word distribution analysis as a novel approach for using descriptive statistics to calculate a compressed representation of word positions in a document corpus is introduced. Based on this statistical app...

متن کامل

مدل جدیدی برای جستجوی عبارت بر اساس کمینه جابه‌جایی وزن‌دار

Finding high-quality web pages is one of the most important tasks of search engines. The relevance between the documents found and the query searched depends on the user observation and increases the complexity of ranking algorithms. The other issue is that users often explore just the first 10 to 20 results while millions of pages related to a query may exist. So search engines have to use sui...

متن کامل

A Discourse Search Engine Based on Rhetorical Structure Theory

Representing a document as a bag-of-words and using keywords to retrieve relevant documents have seen a great success in large scale information retrieval systems such as Web search engines. Bag-of-words representation is computationally efficient and with proper term weighting and document ranking methods can perform surprisingly well for a simple document representation method. However, such ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010