Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition.

نویسندگان

  • Silvija Bilokapic
  • Timm Maier
  • Dragana Ahel
  • Ita Gruic-Sovulj
  • Dieter Söll
  • Ivana Weygand-Durasevic
  • Nenad Ban
چکیده

Methanogenic archaea possess unusual seryl-tRNA synthetase (SerRS), evolutionarily distinct from the SerRSs found in other archaea, eucaryotes and bacteria. The two types of SerRSs show only minimal sequence similarity, primarily within class II conserved motifs 1, 2 and 3. Here, we report a 2.5 A resolution crystal structure of the atypical methanogenic Methanosarcina barkeri SerRS and its complexes with ATP, serine and the nonhydrolysable seryl-adenylate analogue 5'-O-(N-serylsulfamoyl)adenosine. The structures reveal two idiosyncratic features of methanogenic SerRSs: a novel N-terminal tRNA-binding domain and an active site zinc ion. The tetra-coordinated Zn2+ ion is bound to three conserved protein ligands (Cys306, Glu355 and Cys461) and binds the amino group of the serine substrate. The absolute requirement of the metal ion for enzymatic activity was confirmed by mutational analysis of the direct zinc ion ligands. This zinc-dependent serine recognition mechanism differs fundamentally from the one employed by the bacterial-type SerRSs. Consequently, SerRS represents the only known aminoacyl-tRNA synthetase system that evolved two distinct mechanisms for the recognition of the same amino-acid substrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation of threonyl- and seryl-tRNA synthetase by cAMP-dependent protein kinase. A possible role in the regulation of P1, P4-bis(5'-adenosyl)-tetraphosphate (Ap4A) synthesis.

Threonyl-tRNA synthetase has been shown to be phosphorylated in reticulocytes (Dang, C. V., Tan, E. M., and Traugh, J. A., (1988) FASEB J. 2, 2376-2379). Upon incubation of reticulocytes with 8-bromo-cAMP, phosphorylation of threonyl-tRNA synthetase is stimulated approximately 2-fold, an increase similar to that observed with ribosomal protein S6. To analyze the effects of phosphorylation on ac...

متن کامل

Seryl-tRNA Synthetases from Methanogenic Archaea: Suppression of Bacterial Amber Mutation and Heterologous Toxicity

Methanogenic archaea possess unusual seryl-tRNA synthetases (SerRS), evolutionarily distinct from the SerRSs found in other archaea, eucaryotes and bacteria. Our recent X-ray structural analysis of Methanosarcina barkeri SerRS revealed an idiosyncratic N-terminal domain and catalytic zinc ion in the active site. To shed further light on substrate discrimination by methanogenic-type SerRS, we se...

متن کامل

Fidelity of seryl-tRNA synthetase to binding of natural amino acids from HierDock first principles computations.

Seryl-tRNA synthetase (SerRS) charges serine to tRNA(Ser) following the formation of a seryl adenylate intermediate, but the extent to which other non-cognate amino acids compete with serine to bind to SerRS or for the formation of the activated seryl adenylate intermediate is not known. To examine the mechanism of discrimination against non-cognate amino acids, we calculated the relative bindi...

متن کامل

Trypanosoma seryl-tRNA synthetase is a metazoan-like enzyme with high affinity for tRNASec.

Trypanosomatids are important human pathogens that form a basal branch of eukaryotes. Their evolutionary history is still unclear as are many aspects of their molecular biology. Here we characterize essential components required for the incorporation of serine and selenocysteine into the proteome of Trypanosoma. First, the biological function of a putative Trypanosoma seryl-tRNA synthetase was ...

متن کامل

Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment.

Aminoacyl-tRNA synthetases (aaRSs) ensure faithful translation of mRNA into protein by coupling an amino acid to a set of tRNAs with conserved anticodon sequences. Here, we show that in mitochondria of Saccharomyces cerevisiae, a single aaRS (MST1) recognizes and aminoacylates two natural tRNAs that contain anticodon loops of different size and sequence. Besides a regular tRNA(2Thr) with a thre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 25 11  شماره 

صفحات  -

تاریخ انتشار 2006