v 2 2 2 M ar 2 00 2 15 February 2001 hep - ph / 0103014 The Threshold Expansion of the 2 - loop Sunrise Selfmass Master Amplitudes

نویسنده

  • E. Remiddi
چکیده

The threshold behavior of the master amplitudes for two loop sunrise self-mass graph is studied by solving the system of differential equations, which they satisfy. The expansion at the threshold of the master amplitudes is obtained analytically for arbitrary masses. ——————————PACS 11.10.-z Field theory PACS 11.10.Kk Field theories in dimensions other than four PACS 11.15.Bt General properties of perturbation theory PACS 12.20.Ds Specific calculations PACS 12.38.Bx Perturbative calculations

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Pseudothreshold Expansion of the 2-loop Sunrise Selfmass Master Amplitudes

The values at pseudothreshold of two loop sunrise master amplitudes with arbitrary masses are obtained by solving a system of differential equations. The expansion at pseudothreshold of the amplitudes is constructed and some lowest terms are explicitly presented. ——————————PACS 11.10.-z Field theory PACS 11.10.Kk Field theories in dimensions other than four PACS 11.15.Bt General properties of p...

متن کامل

ar X iv : h ep - p h / 99 12 50 1 v 1 2 4 D ec 1 99 9 December 1999 The Pseudothreshold Expansion of the 2 - loop Sunrise

The values at pseudothreshold of two loop sunrise master amplitudes with arbitrary masses are obtained by solving a system of differential equations. The expansion at pseudothreshold of the amplitudes is constructed and some lowest terms are explicitly presented. ——————————PACS 11.10.-z Field theory PACS 11.10.Kk Field theories in dimensions other than four PACS 11.15.Bt General properties of p...

متن کامل

ar X iv : h ep - p h / 03 10 33 2 v 1 2 9 O ct 2 00 3 DIFFERENTIAL EQUATIONS for the 2 - LOOP EQUAL

The differential equations for the 2-loop sunrise graph, at equal masses but arbitrary momentum transfer, are used for the analytic evaluation of the coefficients of its Laurent-expansion in the continuous dimension d.

متن کامل

ar X iv : h ep - p h / 02 11 17 8 v 1 1 2 N ov 2 00 2 1 Numerical evaluation of master integrals from differential equations ∗

The 4-th order Runge-Kutta method in the complex plane is proposed for numerically advancing the solutions of a system of first order differential equations in one external invariant satisfied by the master integrals related to a Feynman graph. The particular case of the general massive 2-loop sunrise self-mass diagram is analyzed. The method offers a reliable and robust approach to the direct ...

متن کامل

ar X iv : h ep - t h / 06 04 11 3 v 2 2 M ay 2 00 6 Dispersive calculation of the massless multi - loop sunrise diagram

The massless sunrise diagram with an arbitrary number of loops is calculated in a simple but formal manner. The result is then verified by rigorous mathematical treatment. Pitfalls in the calculation with distributions are highlighted and explained. The result displays the high energy behaviour of the massive sunrise diagrams, whose calculation is involved already for the two-loop case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002