Fast Probabilistic Optimization from Noisy Gradients
نویسنده
چکیده
Stochastic gradient descent remains popular in large-scale machine learning, on account of its very low computational cost and robustness to noise. However, gradient descent is only linearly efficient and not transformation invariant. Scaling by a local measure can substantially improve its performance. One natural choice of such a scale is the Hessian of the objective function: Were it available, it would turn linearly efficient gradient descent into the quadratically efficient Newton-Raphson optimization. Existing covariant methods, though, are either super-linearly expensive or do not address noise. Generalising recent results, this paper constructs a nonparametric Bayesian quasi-Newton algorithm that learns gradient and Hessian from noisy evaluations of the gradient. Importantly, the resulting algorithm, like stochastic gradient descent, has cost linear in the number of input dimensions.
منابع مشابه
Extension of Cube Attack with Probabilistic Equations and its Application on Cryptanalysis of KATAN Cipher
Cube Attack is a successful case of Algebraic Attack. Cube Attack consists of two phases, linear equation extraction and solving the extracted equation system. Due to the high complexity of equation extraction phase in finding linear equations, we can extract nonlinear ones that could be approximated to linear equations with high probability. The probabilistic equations could be considered as l...
متن کاملBayesian Optimization with Gradients
Bayesian optimization has been successful at global optimization of expensiveto-evaluate multimodal objective functions. However, unlike most optimization methods, Bayesian optimization typically does not use derivative information. In this paper we show how Bayesian optimization can exploit derivative information to find good solutions with fewer objective function evaluations. In particular, ...
متن کاملGradient Formulae for Nonlinear Probabilistic Constraints with Gaussian and Gaussian-Like Distributions
Probabilistic constraints represent a major model of stochastic optimization. A possible approach for solving probabilistically constrained optimization problems consists in applying nonlinear programming methods. In order to do so, one has to provide sufficiently precise approximations for values and gradients of probability functions. For linear probabilistic constraints under Gaussian distri...
متن کاملFast Variational Inference in the Conjugate Exponential Family
We present a general method for deriving collapsed variational inference algorithms for probabilistic models in the conjugate exponential family. Our method unifies many existing approaches to collapsed variational inference. Our collapsed variational inference leads to a new lower bound on the marginal likelihood. We exploit the information geometry of the bound to derive much faster optimizat...
متن کاملComparative Study of Particle Swarm Optimization and Genetic Algorithm Applied for Noisy Non-Linear Optimization Problems
Optimization of noisy non-linear problems plays a key role in engineering and design problems. These optimization problems can't be solved effectively by using conventional optimization methods. However, metaheuristic algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) seem very efficient to approach in these problems and became very popular. The efficiency of these ...
متن کامل