Reduced dendritic arborization and hyperexcitability of pyramidal neurons in a Scn1b-based model of Dravet syndrome.
نویسندگان
چکیده
Epileptic encephalopathies, including Dravet syndrome, are severe treatment-resistant epilepsies with developmental regression. We examined a mouse model based on a human β1 sodium channel subunit (Scn1b) mutation. Homozygous mutant mice shared phenotypic features and pharmaco-sensitivity with Dravet syndrome. Patch-clamp analysis showed that mutant subicular and layer 2/3 pyramidal neurons had increased action potential firing rates, presumably as a consequence of their increased input resistance. These changes were not seen in L5 or CA1 pyramidal neurons. This raised the concept of a regional seizure mechanism that was supported by data showing increased spontaneous synaptic activity in the subiculum but not CA1. Importantly, no changes in firing or synaptic properties of gamma-aminobutyric acidergic interneurons from mutant mice were observed, which is in contrast with Scn1a-based models of Dravet syndrome. Morphological analysis of subicular pyramidal neurons revealed reduced dendritic arborization. The antiepileptic drug retigabine, a K+ channel opener that reduces input resistance, dampened action potential firing and protected mutant mice from thermal seizures. These results suggest a novel mechanism of disease genesis in genetic epilepsy and demonstrate an effective mechanism-based treatment of the disease.
منابع مشابه
Effect of Boswellia serrata Triana & Planch. gum resin administration during lactation on morphology of pyramidal neurons in hippocampus of rat
Background & Aim: In traditional medicine, Boswellia species gum resin known as Frankincense or Olibanum, has been administrated in elderly for enhancement of memory and also in pregnant women to increase memory and intelligence of progeny. However, it has been rarely scientifically documented so far. We have previously reported that maternal administration of Frankincense during lacta...
متن کاملEffect of Boswellia serrata Triana & Planch. gum resin administration during lactation on morphology of pyramidal neurons in hippocampus of rat
Background & Aim: In traditional medicine, Boswellia species gum resin known as Frankincense or Olibanum, has been administrated in elderly for enhancement of memory and also in pregnant women to increase memory and intelligence of progeny. However, it has been rarely scientifically documented so far. We have previously reported that maternal administration of Frankincense during lacta...
متن کاملA functional null mutation of SCN1B in a patient with Dravet syndrome.
Dravet syndrome (also called severe myoclonic epilepsy of infancy) is one of the most severe forms of childhood epilepsy. Most patients have heterozygous mutations in SCN1A, encoding voltage-gated sodium channel Na(v)1.1 alpha subunits. Sodium channels are modulated by beta1 subunits, encoded by SCN1B, a gene also linked to epilepsy. Here we report the first patient with Dravet syndrome associa...
متن کاملLow-frequency Stimulation Decreases Hyperexcitability through Adenosine A1 Receptors in the Hippocampus of Kindled Rats
Introduction: In this study, the role of A1 adenosine receptors in improving the effect of Low-Frequency Electrical Stimulation (LFS) on seizure-induced hyperexcitability of hippocampal CA1 pyramidal neurons was investigated. Methods: A semi-rapid hippocampal kindling model was used to induce seizures in male Wistar rats. Examination of the electrophysiological properties of CA1 pyramidal neur...
متن کاملA Stereological Study on Hippocampal Subfields Following Administration of Methamphetamine in Male Mice
Background and Aims: This study examined sub-chronic effects of Methamphetamine (METH) on the stereological parameters in the Cornu Ammonis (CA) of the hippocampus in adult mice. Materials and Methods: Fifteen adult male mice, eight weeks old, were randomly divided into three groups: receive saline (controls), or low-dose (LD) 2.5 mg/kg METH, or high-dose (HD) 25 mg/kg METH, via daily intrap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 137 Pt 6 شماره
صفحات -
تاریخ انتشار 2014