Regularity Theory for Hamilton-Jacobi Equations
نویسنده
چکیده
using a new set of ideas that combines dynamical systems techniques with control theory and viscosity solutions methods. In (1), H(p, x) : R → R is a smooth Hamiltonian, strictly convex, i.e., D vvL(x, v) > γ > 0 uniformly (this is also called uniformly convex by some authors), and coercive in p (lim|p|→∞ H(p,x) |p| = ∞), and Z n periodic in x (H(p, x + k) = H(p, x) for k ∈ Z). Since R is the universal covering of the n-dimensional torus, we identify H with its projection prH : T × R → R. By changing
منابع مشابه
Topics on optimal control and PDEs
The course deals with the analysis of optimal control problems and of the related first order PDEs of dynamic programming. In particular, we shall focus our attention on time optimal control problems for linear and nonlinear systems. We shall present some recent results concerning the regularity and the compactness of viscosity solutions to Hamilton-Jacobi and Hamilton-Jacobi-Bellmann Equations...
متن کاملHamilton-jacobi Methods for Vakonomic Mechanics
We extend the theory of Aubry-Mather measures to Hamiltonian systems that arise in vakonomic mechanics and subRiemannian geometry. We use these measures to study the asymptotic behavior of (vakonomic) action-minimizing curves, and prove a bootstrapping result to study the partial regularity of solutions of convex, but not strictly convex, Hamilton-Jacobi equations.
متن کاملRegularity and Variationality of Solutions to Hamilton-Jacobi Equations. part II: variationality, existence, uniqueness
We formulate an Hamilton–Jacobi partial differential equation
متن کاملRisk-Sensitive Mean-Field Stochastic Differential Games
In this paper, we study a class of risk-sensitive mean-field stochastic differential games. Under regularity assumptions, we use results from standard risk-sensitive differential game theory to show that the mean-field value of the exponentiated cost functional coincides with the value function of a Hamilton-Jacobi-Bellman-Fleming (HJBF) equation with an additional quadratic term. We provide an...
متن کاملLower Bound Gradient Estimates for First-order Hamilton-jacobi Equations and Applications to the Regularity of Propagating Fronts
This paper is concerned with rst-order time-dependent Hamilton-Jacobi Equations. Exploiting some ideas of Barron and Jensen 9], we derive lower bound estimates for the gradient of a locally Lipschitz continuous viscosity solution u of equations with a convex Hamiltonian. Using these estimates in the context of the level-set approach to front propagation, we investigate the regularity properties...
متن کاملA Comparison Principle for Hamilton-jacobi Equations with Discontinuous Hamiltonians
We show a comparison principle for viscosity superand subsolutions to Hamilton-Jacobi equations with discontinuous Hamiltonians. The key point is that the Hamiltonian depends upon u and has a special structure. The supersolution must enjoy some additional regularity.
متن کامل