Regularization schemes for degenerate Richards equations and outflow conditions
نویسندگان
چکیده
We analyze regularization schemes for the Richards equation and a time discrete numerical approximation. The original equations can be doubly degenerate, therefore they may exhibit fast and slow diffusion. Additionally, we treat outflow conditions that model an interface separating the porous medium from a free flow domain. In both situations we provide a regularization with a non-degenerate equation and standard boundary conditions, and discuss the convergence rates of the approximations.
منابع مشابه
Unsaturated subsurface flow with surface water and nonlinear in - and outflow conditions ∗
We analytically and numerically analyze groundwater flow in a homogeneous soil described by the Richards equation, coupled to surface water represented by a set of ordinary differential equations (ODE’s) on parts of the domain boundary, and with nonlinear outflow conditions of Signorini’s type. The coupling of the partial differential equation (PDE) and the ODE’s is given by nonlinear Robin bou...
متن کاملSelection of Intermodal Conductivity Averaging Scheme for Unsaturated Flow in Homogeneous Media
The nonlinear solvers in numerical solution of water flow in variably saturated soils are prone to convergence difficulties. Many aspects can give rise to such difficulties, like very dry initial conditions, a steep pressure gradient and great variation of hydraulic conductivity occur across the wetting front during the infiltration of water. So, the averaging method applied to compute hydraul...
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملFinite Volume Schemes for Nonlinear Parabolic Problems: Another Regularization Method
Abstract. On one hand, the existence of a solution to degenerate parabolic equations, without a nonlinear convection term, can be proven using the results of Alt and Luckhaus, Minty and Kolmogorov. On the other hand, the proof of uniqueness of an entropy weak solution to a nonlinear scalar hyperbolic equation, first provided by Krushkov, has been extended in two directions: Carrillo has handled...
متن کاملDegenerate kernel approximation method for solving Hammerstein system of Fredholm integral equations of the second kind
Degenerate kernel approximation method is generalized to solve Hammerstein system of Fredholm integral equations of the second kind. This method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. Convergence analysis is investigated and on some test problems, the propo...
متن کامل