On Levenberg-Marquardt Kaczmarz regularization methods for ill-posed problems
نویسندگان
چکیده
We investigate modified Levenberg-Marquardt methods coupled with a Kaczmarz strategy for obtaining stable solutions of nonlinear systems of ill-posed operator equations. We show that the proposed method is a convergent regularization method.
منابع مشابه
On Levenberg-marquardt-kaczmarz Iterative Methods for Solving Systems of Nonlinear Ill-posed Equations
In this article a modified Levenberg-Marquardt method coupled with a Kaczmarz strategy for obtaining stable solutions of nonlinear systems of ill-posed operator equations is investigated. We show that the proposed method is a convergent regularization method. Numerical tests are presented for a non-linear inverse doping problem based on a bipolar model.
متن کاملOn the convergence of a regularizing Levenberg-Marquardt scheme for nonlinear ill-posed problems
In this note we study the convergence of the Levenberg-Marquardt regularization scheme for nonlinear ill-posed problems. We consider the case that the initial error satisfies a source condition. Our main result shows that if the regularization parameter does not grow too fast (not faster than a geometric sequence), then the scheme converges with optimal convergence rates. Our analysis is based ...
متن کاملA Statistical Method for Regularizing Nonlinear Inverse Problems
Inverse problems are typically ill-posed or ill-conditioned and require regularization. Tikhonov regularization is a popular approach and it requires an additional parameter called the regularization parameter that has to be estimated. The χ method introduced by Mead in [8] uses the χ distribution of the Tikhonov functional for linear inverse problems to estimate the regularization parameter. H...
متن کاملA Regularizing Levenberg - Marquardt Scheme , with Applications to Inverse Groundwaterfiltration
The rst part of this paper studies a Levenberg-Marquardt scheme for nonlinear inverse problems where the corresponding Lagrange (or regularization) parameter is chosen from an inexact Newton strategy. While the convergence analysis of standard implementations based on trust region strategies always requires the invertibility of the Fr echet derivative of the nonlinear operator at the exact solu...
متن کاملΧ Tests for the Choice of the Regularization Parameter in Nonlinear Inverse Problems∗
We address discrete nonlinear inverse problems with weighted least squares and Tikhonov regularization. Regularization is a way to add more information to the problem when it is ill-posed or ill-conditioned. However, it is still an open question as to how to weight this information. The discrepancy principle considers the residual norm to determine the regularization weight or parameter, while ...
متن کامل